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S U M M A R Y
Several methods have been proposed in the past years to extract the Rayleigh wave ellipticity
from horizontal-to-vertical spectral ratios of single station ambient noise recordings. The
disadvantage of this set of techniques is the difficulty in clearly identifying and separating the
contribution of higher modes. In most cases, only the fundamental mode of ellipticity can be
identified. Moreover, it is generally difficult to correct for the energy of SH and Love waves
present in the horizontal components of the ambient vibration wavefield.

We introduce a new methodology to retrieve Rayleigh wave ellipticity using high-resolution
frequency–wavenumber array analysis. The technique is applied to the three components of
motion and is based on the assumption that an amplitude maximum in the f –k cross-spectrum
must represent the true power amplitude of the corresponding signal. In the case of Rayleigh
waves, therefore, the ratio between maxima obtained from the horizontal (radial-polarized)
and vertical components of motion will also represent the frequency-dependent ellipticity
function. Consequently, if we can identify the Rayleigh dispersion curves of several modes
on the f –k plane, then the corresponding modal ellipticity patterns can also be separated and
extracted.

To test the approach, synthetic and real data sets were processed. In all tested cases, a reliable
estimation of segments of the fundamental mode ellipticity was obtained. The identification
of higher modes is possible in most cases. The quality of results depends on the selected array
geometry and the signal-to-noise ratio, with a major improvement achieved by increasing the
number of receivers employed during the survey. An experiment conducted in the town of Visp
(Switzerland) allowed the retrieval of portions of ellipticity curves up to the second Rayleigh
higher mode, using two concentric circular array configurations of 14 and 11 receivers each.

Key words: Fourier analysis; Earthquake ground motions; Surface waves and free oscilla-
tions; Site effects; Computational seismology; Wave propagation.

1 I N T RO D U C T I O N

Ambient noise analysis is an easily implemented and economi-
cal set of techniques based on passive acquisition and processing
of natural and anthropogenic microtremors. These techniques are
commonly employed in microzonation and earthquake engineering
studies to quickly obtain reliable information about S-wave velocity
profiles (e.g. Tokimatsu 1997) and soil fundamental frequencies of
resonance (e.g. Nakamura 1989). Despite their poor resolution in
discriminating between small variations in geophysical properties,
these methodologies are in some cases preferable to other types of
high-resolution seismic surveys. The low frequency energy content
of the ambient noise wavefield allows investigation of deep layers
(Yamanaka et al. 1994). This characteristic is particularly suited to
site effect analysis and when it is useful to evaluate, even if coarsely,
the soil deposit properties up to or sometimes below the bedrock
limit. Moreover, employing passive source techniques is preferable

in urban areas or in any situation where invasive procedures, such
as drilling and cone penetrometer, must be avoided.

Ambient noise analysis rests on the assumption that the noise
wavefield from 0.5 to 20 Hz is constituted of surface waves, with
a minor but significant contribution from body waves (Li et al.
1984; Horike 1985). This assumption has been validated by obser-
vation and comparison between field measurements and synthetic
tests, however the relative proportion of these waves still remains an
open issue. Similarly, it is difficult to evaluate with sufficient accu-
racy the relative contribution of Love and Rayleigh waves (Köhler
et al. 2007), and among these to establish a precise proportion
between fundamental and higher modes (for a complete literature
review see Bonnefoy-Claudet et al. 2006a). Asten et al. (2004) and
Asten (2006), with a technique titled multimode SPAC (MMSPAC),
specifically recognizes the possibility of the identification of mul-
tiple modes. So far, a general agreement is present on the fact
that Love waves are in most cases dominant (Okada 2003).
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Nevertheless, a certain number of site-dependent controlling factors
can be listed: type, orientation and spatial distribution of shallow
and buried sources, as well as seismic impedance and attenuation
values for the investigated site.

The predominant contribution of surface waves in the noise wave-
field is the main property on which several techniques based on
single and multistation recording were developed. Among these,
the ambient noise horizontal-to-vertical spectral ratio (Nogoshi &
Igarashi 1971) is a simple single-station method that has been
widely used in the past years to obtain estimations of the fun-
damental frequency of resonance of soils (f 0). In case of strong
velocity contrast between sediments and bedrock, f 0 is close to
the first maximum of the Rayleigh ellipticity fundamental mode,
most likely always present in the H/V spectrum (e.g. Lachet &
Bard 1994; Fäh et al. 2003). The simultaneous presence of Love
and body waves in the noise wavefield, other than the interac-
tion and superposition of higher modes, makes the identification
of the ellipticity function within spectral ratios ambiguous (Fäh
et al. 2001). In practice, only in certain situations it is possible to
separate and extract (with acceptable confidence) the stable por-
tion of that curve. These portions, moreover, can be addressed
only to the fundamental mode of propagation, but nothing can
be said about higher modes. Several attempts to avoid this prob-
lem have been proposed, for example, modelling the whole H/V
spectrum by mixing some contributions of Love and Rayleigh
waves and including higher modes (Arai & Tokimatsu 2004;
Parolai et al. 2005). This method has the advantage of not requiring
any previous separation of wave components. However, it strictly
depends on a certain number of assumptions (e.g. source type and
distribution) that are difficult to be verified.

In this paper, we propose a new method to evaluate the Rayleigh-
wave modal ellipticity function. We modified a version of the high-
resolution frequency–wavenumber analysis proposed by Capon
(1969). Our technique rests on the simple fact that the power spec-
trum calculated with it preserves, along with the phase information,
the amplitude characteristics of the investigated signal (Marzetta
1983). Being able to perform this transformation both on the verti-
cal and horizontal radial-polarized directions of motion (Fäh et al.
2008) allows us to reconstruct the signal’s in-plane particle motion.
Thus, for Rayleigh waves, the modal ellipticity function can be di-
rectly evaluated by performing the H/V spectral ratios between
f –k power amplitudes. Such amplitudes correspond to a specific
and well-defined mode of propagation.

With synthetic and real data sets, we demonstrate that this method
allows us to obtain, at one time and with the same elaboration
scheme, key data about Rayleigh waves: phase velocity disper-
sion curves and ellipticity. A combined inversion, together with
Love wave dispersion or other constraints, might help in decreasing
the non-uniqueness of the problem and avoiding solutions that are
trapped in local minima (Fäh et al. 2008).

2 M E T H O D

Frequency–wavenumber analysis is a spectral technique based on
seismic array recording. Such methods have been widely used in
determining earthquake direction, in monitoring nuclear explosions
and in estimating wave phase velocity. In particular, high resolution
beamforming (Capon 1969), also known as the maximum likelihood
or minimum variance method, is a popular data adaptive and alias-
free algorithm for computing the frequency–wavenumber spectrum.
Applying this method to ambient noise recordings helps us to un-

derstand the general composition of the microseismic wavefield: its
wave content, propagation and surface wave dispersion.

Since the vertical component of ground motion is affected only by
body and Rayleigh wave propagation phenomena (Love component
results in an horizontally polarized wavefield), f –k array processing
has been employed extensively to derive data on Rayleigh wave
phase velocity dispersion (Kind et al. 2005; Wathelet 2005). Recent
improvements (Fäh et al. 2008) allow us to analyse full ground
motion (both horizontal and vertical components) to identify and
separate the two complementary surface wave contributions. This
is done through radial/transversal polarization analysis. In addition,
we extended the technique to estimate the signal spectral power
content with the goal of evaluating frequency-dependent Rayleigh
wave particle motion.

2.1 Basic array processing

Let us consider a spatial configuration of n seismic vertical receivers
located at coordinates [x1 x2 ... xn, y1 y2 ... yn]. In the simplest
case, this sensor array samples a narrowband planar wavefield a(f )
that propagates along the surface from a source located at infinite
distance (far-field approximation) in direction θ , also defined as
the direction of arrival (DOA). If no attenuation phenomena are
assumed, the frequency dependent wavefield amplitude is constant
to |a( f )| at each receiver location. However, each sensor samples the
plane wave with a certain phase shift depending on its coordinates,
the DOA, the analysed frequency f and the wave slowness s. In
the frequency domain, the i-esim receiver output can therefore be
expressed through its constituents as

ui ( f ) = g( f )a( f )e−2π j f s[cos (θ)xi +sin (θ)yi ] (1)

or, identically, in terms of wavenumber

ui ( f ) = g( f )a( f )e−2π j |k|[cos (θ)xi +sin (θ)yi ]

= g( f )a( f )ei (k).
(2)

If we define the ‘true’ signal steering vector as

e(k) = [e1(k)e2(k)...en(k)]T (3)

the receiver output can be expressed in vectorial notation as

u( f ) = g( f )a( f )e(k). (4)

A gain scaling factor g(f ) is also included to represent the instru-
mental amplification of the seismometers. However for simplicity
and without any loss of generality, we can set this parameter equal
to unity for each station location. Finally, an additional amount
of incoherent noise, not addressable to wave propagation phenom-
ena, should be realistically included as a frequency dependent noise
vector η( f )

u( f ) = a( f )e(k) + η( f ). (5)

Note that the incoherent noise is not related to the ‘ambient noise’
wavefield, which in this case is the coherent signal to analyse. Such
disturbance must be considered the true noise of the system, and
should therefore be treated statistically (Strobbia 2003). Incoherent
noise can be generated from an ensemble of different sources, that is,
non-systematic digitization errors, electrical disturbances or local,
uncorrelated microvibrations of the ground. Later we will demon-
strate how this variable amount of noise can drastically influence
the efficiency of beamforming methods.
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Figure 1. Signal identification using classical beamforming: a linear array of 20 receivers with spacing of 5 m is employed. The power output is calculated for
a frequency of 2 Hz and different noise variances are included for comparison (0.1 in red, 1 in green and 10 in blue). In case (a) a single signal with velocity of
100 m s−1 and amplitude 10 is analysed. In case (b) two signals with velocities of 100 and 200 m s−1 and amplitudes 10 and 20 are considered. In case (c) the
two signals of (b) now have a velocity of 100 and 120 m s−1, respectively. True amplitudes are also presented for comparison (black circles).

Under the assumption of uncorrelation between signal and noise,
the receiver output vector is then used to estimate the signal cross-
correlation (or ‘covariance’) spectral matrix as

R̂( f ) = E{u( f )uh( f )}
= E{e(k)a( f )ah( f )eh(k)} + E{η( f )ηh( f )}, (6)

where the superscript h denotes conjugate (Hermitian) transpose
and E stands for expectation. Note that the products between signal
and noise are suppressed because of the uncorrelation. In practice,
the expected value is obtained from an average between several
cross-correlation snapshots of successive time-windows (block av-
eraging).

At a specific frequency, we can assume the noise of the system to
be a zero mean Gaussian process with variance σ 2( f ). Therefore,
for a stationary signal the eq. (6) simplifies to

R̂( f ) = e(k)|a( f )|2eh(k) + σ 2( f )Î, (7)

where Î is the identity matrix. From the cross-correlation matrix, the
‘total array power output’ P(f ) can then be calculated by summing
its elements

P( f ) = [1]hR̂( f )[1], (8)

where [1] is a vector of n elements equal to 1.

2.2 Classical beamforming

In classical beamforming techniques (Lacoss et al. 1969), the total
array power output is weighted with a filter vector w(k) equal to the
‘presumed’ signal steering vector ep(k) divided by the number of
sensors

P( f, k) = wh(k)R̂( f )w(k), (9)

w(k) = ep(k)

n
. (10)

The true signal steering vector is initially unknown, as are the di-
rection of propagation and the velocity of the investigated wave.
However, identifying the correct value is straightforward; a direct
grid search over s and θ (or identically over kx and ky) can be per-
formed. The presumed steering vector is thus rebuilt every time for
each combination of parameters. As a consequence, a maximum in
the total array output function is achieved when the presumed and
the true steering direction match [ep(k) =e(k)]. In such case is

eh
p(k)e(k) = eh(k)ep(k) = n (11)

and then for simple substitution in eqs (7), (9) and (10)

P( f, k) = 1

n2

{
n|a( f )|2n + σ 2( f )n

}
= |a( f )|2 + σ 2( f )

n
. (12)

Thus, the array power output corresponds to the true energy of the
signal, plus an amount of distortion introduced by the noise variance
(Fig. 1a).

As shown, this approach preserves the amplitude characteristics
in cases of minimum or null noise variance (or a large number of
receivers) and when a perfect match holds between the true and the
presumed steering vectors. Unfortunately, it is not robust enough to
sufficiently minimize the power output in a situation of progressive
steering vectors mismatch. That case results in a generally poor
resolution and can be summarized by analysis of the theoretical
array response or ‘beampattern’. This represents the array power
output for a signal of unitary amplitude and zero phase (e.g. the
case of a vertically incident plane wave).

B(k) = wh(k)[1̂]w(k). (13)

Here [1̂] is a square matrix of n · n elements equal to 1. The
array power output for any generic wavefield can be obtained by
convolving the theoretical response with the signal impulse in the
wavenumber domain (Wathelet 2005). It is therefore evident that
the shape of the beampattern function will be the primary factor in
controlling the resolution.

Furthermore, any assumption of a wavefield constituted by only
a single plane wave cannot realistically represent ambient noise
phenomena. In real situations multiple signals propagate simulta-
neously, impinge the array from different directions and overlap
one another. Let us consider, as an example, the propagation of M
surface wave higher modes

u( f ) =
M∑

i=1

ai ( f )e(ki ) + η( f ). (14)

Following from eq. (6) and under the assumption that the noise and
the signals are uncorrelated, the cross-correlation matrix has the
form

R̂( f ) = E

{
M∑

i=1

M∑
l=1

e(ki )ai ( f )ah
l ( f )eh(kl )

}
+ σ 2( f )Î. (15)

However, in case of ambient noise, we can assume the signals are
non-stationary over long durations. Consequently, different signals
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(i �= l) can be reasonably considered to be uncorrelated over suc-
cessive time window snapshots. In such a case, the mixed products
of the previous equation tend to vanish by means of the expectation
procedure. Therefore the cross-correlation matrix simplifies to

R̂( f ) �
M∑

i=1

e(ki )|ai ( f )|2eh(ki ) + σ 2( f )Î. (16)

It is easy to demonstrate that the total power output is distorted by the
reciprocal interference between wavefields as well as noise. As in the
previous example, once the steering vector of the signal of interest
is identified [e.g. ep(k) =e(k1)], the corresponding amplitude will
deteriorate due to the M interfering steering vectors

P( f, k1) � |a1( f )|2

+
M∑

i=2

|ai ( f )|2
n2

eh(k1)e(ki )e
h(ki )e(k1)

+ σ 2( f )

n
.

(17)

Nevertheless, this amplitude approximation has been experimen-
tally demonstrated to be valid if the signals are not too similar (in
terms of DOA and slowness, e.g. Figs 1b and c) and the number of
receivers is sufficiently large to minimize the beampattern geome-
try effect (Asten & Henstridge 1984). Note as well that the noise
variance influences the total power output P( f , k) as a positive
amplitude shift of the power spectrum only. Its shape will remain
unmodified.

2.3 High resolution beamforming

In high resolution beamforming, the target is to weight the array
power output with a ‘data adaptive’ filter vector w (k). This mini-
mizes distortions induced by mismatches between the true and the
presumed steering vector, and at the same time minimizes the influ-
ence of uncorrelated noise (Capon 1969; Marzetta 1983). However,
the procedure should not affect the signal correlation in the final
result. In practice, we want to solve the following quadratic mini-
mization problem:

P( f, k) = min
w

{
wh(k)R̂( f )w(k)

}
(18)

subject to the amplitude constraint

wh(k)ep(k) = 1. (19)

The minimization problem can be solved using the Lagrange mul-
tiplier in this form

w(k) = R̂−1( f )ep(k)

eh
p(k)R̂−1( f )ep(k)

. (20)

Consequently, the weighted power output (18) will be expressed for
substitution and resulting simplification as

P( f, k) = 1

eh
p(k)R̂−1( f )ep(k)

. (21)

As in the case of classical beamforming, the true signal steering
vector can be found with a simple grid search over s and θ . In
addition, we now want to evaluate to what degree the total power
output can deviate from the true energy of the signal when a perfect
match occurs between the true and presumed steering vector. To
analyse this we use a singular value decomposition. The steering

vector can be factorized into its orthonormal basis (Ĵ and L) and
singular values (K) as

e(k) = ĴKLh, (22)

where Ĵ is a n · n orthogonal matrix containing the basis vector
directions of e(k) and L is a scalar with the only admissible values
±1. The decomposition of a steering vector always produces one
unique singular value. Consequently, K is a column vector with
all elements, except the first, equal to 0. Similarly, for the steering
vector cross-product, an Hermitian positive semi-definite matrix, it
is always possible to find an eigendecomposition that satisfies

e(k)eh(k) = ĴKLh LKh Ĵh = ĴŜĴh, (23)

where Ŝ is the n · n diagonal eigenvalue matrix. Summarizing, the
following relations are then valid

L = ±1,

KKh = Ŝ,

ĴĴh = Ĵh Ĵ = Î.
(24)

Given the decomposition in (23), we have the property

tr (e(k)eh(k)) = tr (Ŝ) = tr (KKh) = n, (25)

where tr stands for matrix trace. Therefore, the unique singular
value in K will be exactly

√
n.

The inverse of the cross-correlation matrix of eq. (7) can then be
expressed for substitution as

R̂−1( f ) = {|a( f )|2ĴŜĴh + σ 2( f )Î
}−1

, (26)

R̂−1( f ) = 1

|a( f )|2
{

ĴŜĴh + σ 2( f )

|a( f )|2 Î

}−1

. (27)

Because Ĵ is orthogonal and consequently ĴĴh = Î, it is possible to
write

R̂−1( f ) = 1

|a( f )|2
{

ĴŜĴh + Ĵ
σ 2( f )

|a( f )|2 ÎĴh

}−1

(28)

and using the distributive property of matrix multiplication

R̂−1( f ) = 1

|a( f )|2
{

Ĵ

{
Ŝ + σ 2( f )

|a( f )|2 Î

}
Ĵh

}−1

. (29)

From the property {ÂB̂Ĉ}−1 = Ĉ−1B̂−1Â−1 it follows that

R̂−1( f ) = 1

|a( f )|2
{
Ĵh

}−1
{

Ŝ + σ 2( f )

|a( f )|2 Î

}−1{
Ĵ
}−1

(30)

and because {Ĵh}−1 = Ĵ and identically Ĵ−1 = Ĵh we obtain

R̂−1( f ) = 1

|a( f )|2 Ĵ

{
Ŝ + σ 2( f )

|a( f )|2 Î

}−1

Ĵh . (31)

Consequently, using the decomposition in eqs (22), the total power
output in (21) can be expressed as

P( f, k) = |a( f )|2

LKh Ĵh Ĵ
{

Ŝ + σ 2( f )
|a( f )|2 Î

}−1
Ĵh ĴKLh

, (32)

and using the properties in (24)

P( f, k) = |a( f )|2

Kh
{

KKh + σ 2( f )
|a( f )|2 Î

}−1
K

. (33)
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Figure 2. Signal identification using high-resolution beamforming: we use the same array configuration as in Fig. 1. Compared to classical beamforming,
this method allows more accurate identification of single (a) and multiple signals (b), minimizing the effect of the array response. As evident using the three
previous noise variances, the total power output level is sensitive to the amount of uncorrelated noise. In case of strong noise variance (blue line), if two signals
are too close in slowness (case c) even this method will fail, giving rise to artefact peaks.

Therefore, given the characteristics of K obtained from the consid-
erations in (25), the previous equation simplifies to a purely scalar
form

P( f, k) = |a( f )|2{
n|a( f )|2

n|a( f )|2+σ 2( f )

} =
{
|a( f )|2 + σ 2( f )

n

}
. (34)

As in classical beamforming, if the noise variance is assumed to be
small and/or the number of receivers is sufficiently large, this tech-
nique can closely reconstruct the original power amplitude with
only negligible distortion (Fig. 2a). Note, however, that if the noise
variance is too small or even zero, the method cannot be applied.
In this case, the signal cross-correlation matrix is singular or close
to singularity and consequently cannot be inverted. In such situa-
tions it is common practice to introduce some artificial noise to the
system using a matrix diagonal load (Capon 1969). This procedure
stabilizes the inversion, but has the disadvantage of depending on
the defined optimal load being applied without considerable signal
distortion. Asten (1976) has experimentally investigated the phe-
nomena and proposed a percentual loading value of 1.02 with no
significant loss in resolution.

The case of multiple signals is not straightforward to demon-
strate mathematically, but has been experimentally investigated.
Using synthetic signals, we observe that the performance of high-
resolution beamforming is still superior to the classic method when-
ever the steering vector of the signal of interest is identified (Fig. 2b).
However, the amplitude dependence on noise variance, steering vec-
tor mismatching and signal interference is no longer linear. In gen-
eral, incoherent noise most strongly influences the shape of the total
power spectrum (Asten & Henstridge 1984). Consider the simulta-
neous presence of two signals coming from the same direction with
only slightly different velocities, as for two surface wave higher
modes whose dispersion curves are close to apparent intersection.
In such situations, if the incoherent noise within the system is large,
correctly identifying the signal velocities is impossible (Fig. 2c,
blue line), because the adaptive filter is not able to resolve the two
contributions separately. Consequently, the corresponding ampli-
tude maxima tend to converge or even merge, giving the impression
of a unique signal of average characteristics. The amplitude of this
resultant maximum no longer represents one of the original signals.
In such a situation, the definition of a general rule that explains at
which point the method will fail is not an easy task. Other than on the
noise variance of the system, the resolution depends on frequency,
on the number of receivers, their configuration and on the relative
amplitude of the signals. Note, however, that the true amplitudes

are still preserved at their correct locations. This last point is of fun-
damental importance because, if the correct velocity is identified in
some way (e.g. through a procedure of noise filtering), then the true
amplitude, or a good approximation thereof, can be obtained.

2.4 Noise filtering and diagonal loading

We use a hybrid singular-value-decomposition approach that com-
bines noise filtering and loading to improve the resolution of the
method. Note that for a number of coherent signals smaller than
the number of seismic receivers, the smallest singular value of the
matrix R̂ approximates the uncorrelated noise variance σ 2 of the
system (Kogon 2003). Even for a higher number of signals, this ap-
proximation is, in most cases, still valid. Based on this assumption,
we can hypothetically remove the influence of noise by subtracting
this value from each singular value of the signal cross-correlation
matrix. In this case, however, the matrix of singular values be-
comes rank deficient (its last element is equal to 0) and thus R̂ is
no longer invertible. We have then two possibilities: the first is to
use a Moore-Penrose pseudo-inversion that cuts out the null space
from the covariance matrix and produce a least squares solution
(Sibul 1984). The second option consists, by contrast, of loading
the singular values of R̂ with a small quantity to make the matrix
of singular values artificially full rank. In this second case, un-
fortunately, identifying the optimum amount of load to apply is not
obvious. However, some general rules can be defined: obviously, the
final amount of load must be less than the filtered noise variance,
by at least one or two orders of magnitude, but must be sufficiently
large to be numerically invertible, depending on the characteristics
of the software used.

This last approach, theoretically more suitable because it pro-
duces sharp maxima in the spectrum, in practice can lead to an
undervaluation of amplitudes. This happens with a sampling of
the grid search over the slowness–azimuth plane that is too coarse
(Asten & Henstridge 1984). If the signal peak becomes too sharp and
is localized between two consecutive samples, it cannot be correctly
identified. In contrast, the first approach, based on pseudo-inversion,
better preserves the amplitude information but tends toward erro-
neous localization of maxima. As a direct consequence, we imple-
ment a two-step approach: first using a filtering+loading scheme
to correctly localize the signal in the slowness–azimuth plane, and
then computing the correct amplitude value at the retrieved location
with a pseudo-inversion approach.
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2.5 Three component f –k spectrum

Three component f –k analysis (Fäh et al. 2008) extends the origi-
nal high-resolution algorithm. This is based on the assumption that
the superimposed contribution of Love and Rayleigh waves over
the horizontal component of motion can be separated with a DOA
decomposition. The horizontal component cross-power spectral ma-
trix is in this case azimuth dependent. Thus, it must be recalculated
for each possible direction-of-polarization θ (DOP) as a combina-
tion of the north–south and east–west ground motions

uH ( f, θ ) = uN S( f ) cos (θ ) + uEW ( f ) sin (θ ), (35)

R̂H ( f, θ ) = E{uH ( f, θ )uh
H ( f, θ )}. (36)

The array power output is therefore generated separately for
Rayleigh waves (the radial part) as a result of all in-phase con-
tributions with DOA equal to the DOP

P R
H ( f, s, θ ) = 1

eh
p(s, θ )R̂−1

H ( f, θ )ep(s, θ )
. (37)

For Love waves (the transversal part) as a result of all in-phase
contributions with DOA orthogonal to DOP

P L
H ( f, s, θ ) = 1

eh
p(s, θ )R̂−1

H ( f, θ + π

2 )ep(s, θ )
. (38)

All previous considerations regarding the amplitude characteristics
of the vertical component of motion are thus valid for processing of
the two horizontal components.

2.6 Rayleigh ellipticity function evaluation

Now we focus on the relation between the amplitude characteristics
of spectra calculated for both the horizontal-radial and the vertical
components of motion. As previously shown, the Capon algorithm
allows us to reconstruct a signal’s power content whenever its true
location is correctly identified in the s– θ plane. If multiple signals
are simultaneously present in the wavefield (e.g. several modes of
propagation of surface waves), the method can at least theoreti-
cally identify and separate the energy content of each contribution
(Marzetta 1983). Thus, we can demonstrate that for a signal cor-
responding to a specific Rayleigh wave mode, the amplitude ratio
between the horizontal-radial (eq. 37) and the vertical f –k spec-
tra (eq. 21) will also represent its Rayleigh mode-related ellipticity
function. Obviously, the square root of the ratio should be consid-
ered, because cross-correlation methods provide an estimation of
energy, whereas ellipticity is usually represented in terms of dis-
placement.

ell R
H/V �

√
P R

H ( f, s, θ )√
P R

V ( f, s, θ )
=

√√√√ eh
p(s, θ )R̂−1

V ( f ) ep(s, θ )

eh
p(s, θ )R̂−1

H ( f, θ ) ep(s, θ )
. (39)

Clearly, to avoid numerical scaling errors, the two spectral compo-
nents must be processed with the same scheme of parametrization
(windowing length, tapering type, gain, etc.).

However, as we have already stressed, ambient noise can be con-
sidered as an ensemble of several signals generated from sources
uniformly distributed around the array. In this context, wave packets
that belong to the same mode of propagation can exist with very dif-
ferent absolute amplitude, depending on the source distance, type,
orientation and intensity. Consequently, to retrieve true ellipticity,

we must perform the spectral ratio between picked maxima that
belong exclusively to the same signal on the horizontal-radial and
vertical components. In this way, any scaling factor induced by
source variability is automatically removed by the ratio.

Figs 3(a1) and (b1) shows an example of maxima localization
in the slowness–azimuth planes. Two modes of propagation are
clearly identifiable and several signals that belong to these modes
are picked up from different directions of arrival. Note that identi-
fying these maxima is separate for the horizontal-radial and vertical
components of motion. This approach is necessary because the en-
ergy carried by Rayleigh waves could drastically vary between the
two, or even vanish in certain frequency ranges (Fig. 4). Thus, there
could be signals that can be identified only in a specific direction
of motion. This is common for the frequency range corresponding
to the fundamental mode ellipticity first maxima, where the vertical
displacement always decreases toward zero. Consequently, once a
mode is identified on one component, the corresponding amplitude
value in the complementary direction is also extracted. Then the
ratio is performed (Fig. 5).

Finally, the ensemble of all picked values from both components
of motion (Fig. 6a) is analysed statistically by using a normalized
probability density distribution. From the histogram representation
(Fig. 6b), the expected values of ellipticity are then manually ex-
tracted for each frequency.

2.7 Resolution capabilities

In classical beamforming techniques and partially in Capon’s
method, theoretical spectral resolution is controlled by the kind
of temporal and spatial sampling that the sensor array performs
on the seismic wavefield. Since the temporal sampling is al-
ways uniform and generally very dense, simple rules such as the
‘Nyquist–Shannon’ theorem can be applied to define the corre-
sponding frequency resolution limits. In most cases these cover an
extremely broad range

fmin = 1

T
, (40)

fmax(Nyquist) = 1

2dt
, (41)

where dt is the temporal sampling rate and T is the total duration
of the record.

By contrast, the receiver spatial configuration is commonly very
irregular, since practical obstacles (e.g. buildings inside a city) can
force a non-optimal sensor location. Moreover, the number of avail-
able seismic detectors is drastically limited by cost. As a direct
consequence, special considerations are necessary to reconstruct
the correct signal amplitude.

To define the wavenumber resolution limits of beamforming
methods, we express the theoretical array response of eq. (13) in
index notation (Wathelet et al. 2008) as

B(k) = 1

n2

n∑
i=1

n∑
l=1

e− j[kx (xi −xl )+ky (yi −yl )]

=
∣∣∣∣∣ 1

n

n∑
i=1

e− j(kx xi +ky yi )

∣∣∣∣∣
2

. (42)

Note that the beampattern function can also be expressed as the
squared impulse response of the bidimensional discrete Fourier
transform, whose periodicity imposes a wavenumber aliasing limit
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Figure 3. Example of three-component f –k processing using synthetic noise data (see SESAME model M2.2 described in paragraph 3.1, with array geometry
given by the ensemble of all 39 receivers of Fig. 7). Identifying multiple signals on the slowness–azimuth plane is performed separately for the vertical (a1, a2)
and the horizontal-radial (b1, b2) components and for each frequency (an example given here at 8 Hz) using an automatic procedure. It can be observed that
the local maxima picked at a specific slowness value (yellow dots) may have different amplitudes within the range of the minimum and maximum cross-power
spectrum along azimuth (Abs. Min. and Abs. Max. in a2, b2). Their localization, however, clearly indicate the existence of two separate modes of propagation.

Figure 4. Following the example of Fig. 3, all the maxima picked on the slowness–azimuth planes at different frequencies are then collected on the corresponding
slowness–frequency planes (a, for vertical and b, for horizontal radial component) to extract the modal dispersion curves. The surface of maximum cross-power
along azimuth is also presented in background for comparison. It is interesting to note that even if the modal dispersion curves are comparable between the
two components, the distribution of energy is different. Minimum (kmin) and maximum (kmax) wavenumber resolution limits are defined as in Section 2.7.

of

|k|max = 1

2Dmin
, (43)

where Dmin is the minimum distance between receivers within the
array. With some limitations, however, we observed that some re-
sults can also be obtained with the high-resolution method in the
range

1

2Dmin
≤ |k| ≤ 1

Dmin
(44)

due to partial suppression of aliasing induced by adaptive filtering.
Clearly, in this extended range, the number of available receivers
most strongly influences the quality of achievable results.

Defining the wavenumber lower resolution bound is a matter of
discussion (Tokimatsu 1997; Park et al. 1999). We proceed then on
the basis of the following. By substitution of variables, eq. (42) can
also be expressed in the form

B(k) = 1

m

m∑
s=1

e− j(kx Xs+ky Ys ), (45)
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Figure 5. Representing the selected ellipticity values in three dimensions
helps to identify and isolate clusters of points that belong to the same mode
of propagation. This minimizes errors induced by misinterpreting modal
jumps and aliasing. The figure presents in green the ellipticity values from
signals chosen on the horizontal component only, in yellow those from the
vertical and in grey those points beyond resolution limits.

where m = n2 and [Xs, Y s] = [xj − xl, yj − yl] are the coordinates
of the new transformed domain (the lag domain, see Haubrich 1968
for clarification). Note then that the minimum wavenumber will
be controlled by the maximum distance Lmax between samples in
this domain which corresponds to double the maximum existing
distance Dmax between sensors

|k|min = 1

Lmax
= 1

2Dmax
. (46)

Capon’s method improves the resolution range at lower wave-
numbers. In the pure theoretical case, without any noise influence,
the resolution is infinite (Woods & Lintz 1973). In practice, rather
than the array geometry, the level of incoherent noise is the main
factor controlling this lower bound. With microtremors, however, an
objective estimation of this influence is not straightforward. Con-
sequently, to avoid bias in evaluating the ellipticity function, we
decided to be conservative, using the lower limit imposed by clas-
sical f –k analysis.

These considerations are theoretically valid for uniform sam-
pling. Nevertheless, given the array’s irregular geometry in the two
spatial directions, the true resolution becomes azimuth dependent
(Zywicki 1999). Several high-amplitude side-lobes in the beam-
pattern can interfere with the signal of interest. However, under
the assumption that ambient noise sources are equally distributed
around the array, the resolution limits we defined can be considered
valid as an upper bound of possibilities.

Additionally, consider the energy content of the signal. Even in
the best experimental conditions and inside the resolution limits, if
the wave energy is too low, identifying the correct propagation mode
is difficult and maxima are hardly visible in the slowness–azimuth
plane. Therefore, as an additional resolution constraint, we intro-
duce the following empirical rule: compare only those portions of
dispersion curves simultaneously identifiable on both the horizontal
and vertical s–f planes.

3 R E S U LT S

The proposed method has been tested with synthetic and real data
sets of ambient noise array recordings. For synthetics, three differ-
ent models were employed. To make the results comparable, these

Figure 6. The ensemble of all the calculated ellipticity values from the elab-
oration of both vertical and horizontal-radial components (a: colors as for
Fig. 5) is then statistically analysed. We used a histogram representation (b)
to identify a final average value (manually extracted). To make the statistics
comparable over different frequencies, the probability density distributions
are normalized to their maximum value. Theoretical ellipticities are also
presented for comparison (solid curves).

models were selected with similar ellipticity patterns but with in-
creasing structural complexity, going from a simple layer over a half
space to a multilayered model. In contrast, the real case experiment
has been conducted blindly. The experiment location, however, was
selected to approximate the best experimental conditions.

For each processed data set, information about array geome-
try and resolution, phase velocity dispersion and f –k ellipticity is
provided. For synthetics, experimental curves are compared with
the corresponding theoretical ones; for real cases, the results from
the proposed method are presented together with H/V curves ob-
tained from standard single-station analysis to show the improve-
ment achieved.

For processing synthetic and real data sets, ellipticity and dis-
persion curves were extracted manually from f –k spectra using the
histogram representation presented in Fig. 6(b); manual selection
allows a more accurate control over the final result than an automatic
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Table 1. Parameters of the 1-D models employed to generate ambient noise
synthetics.

h (m) V p (m s−1) V s (m s−1) ρ (kg m−3) Qp Qs

M2.1 25 500 200 1900 50 25
2000 1000 2500 100 50

M2.2 25 1350 200 1900 50 25
2000 1000 2500 100 50

M10.2 18 1350 250 1900 50 25
18 1350 333 1900 50 25

2000 1000 2500 100 50

M11.2 4 1350 380 1900 50 25
4 1350 360 1900 50 25
4 1350 340 1900 50 25
4 1350 320 1900 50 25
4 1350 300 1900 50 25
4 1350 280 1900 50 25
4 1350 260 1900 50 25
4 1350 240 1900 50 25
4 1350 220 1900 50 25

2000 1000 2500 100 50

detection procedure. It usually avoids misinterpretation induced by
aliasing or modal jumps.

3.1 Synthetic data sets

Synthetics data sets employed to test the method were pro-
duced within the SESAME European Project (‘Site Effects Assess-
ment Using Ambient Vibrations’, Deliverable 2004 September 12;
Bonnefoy-Claudet et al. 2006b) using a modified version of the
spectral element modelling code proposed by Hisada (1994). All
structural models are 1-D (one or more horizontal soft layers of
different thickness over a stiff half space, Table 1). To realistically
simulate the behaviour of a sedimentary basin, the layer’s velocity
(V p and V s), density (ρ) and quality factors (Qp and Qs) are set to
increase at the bedrock interface. Inside the basin low-velocity zones
are also permitted. The noise field is forced to represent a source
distribution statistically uniform in space and time (for details see
SESAME deliverable D12.09-Wp09 ‘Simulation of seismic noise’).
Two different types of source time-functions were employed simul-
taneously to model the behaviour of the expected ambient noise
sources: a delta-like impulse and an harmonic wavelet-type func-
tion. Point force orientation is allowed to vary (horizontally and
vertically) among sources to give rise to both P-SV and SH wave
propagation phenomena.

Each synthetic data set consist of 39 three-components records
calculated for different station locations; each trace is approximately
405 s long. To test the method under the best experimental condi-
tions, we first used all stations simultaneously to extract dispersion
and ellipticity curves. However, employing such a huge number of
receivers is not realistic, given the high cost of instrumentation. For
this kind of survey, the number of acquisition units usually runs
between 8 and 16. Therefore, we decided to additionally test small
configurations of 13 and 14 stations (Fig. 7). We selected the rela-
tive array geometry from the available station locations and tried to
resolve the frequency range between 2 and 15 Hz.

3.1.1 Model M2.1

Model M2.1 represents the simplest situation in which a unique
horizontal sedimentary layer overlays a high-velocity half-space
(the geophysical bedrock). In this case, a unique strong contrast of
impedance holds for S- and P-wave velocities.

For the fundamental mode, using the entire set of available sta-
tions, we can obtain a nearly perfect match between the theoretical
and experimental ellipticities over the entire frequency range inside
the resolution limits of this configuration (Fig. 8a2). A slight over-
estimation is observed in the middle part of the right flank of the
curve; most probably due to the fact that array analysis can min-
imize the body wave influence, but not entirely remove it. Thus,
overestimation can be interpreted as the residual presence of SH
waves on the horizontal component.

For the first higher mode, good results are obtained only in the
frequency range where the corresponding dispersion curve is clearly
identifiable in the slowness–frequency plane. In this case, the en-
ergy content of the mode is sufficiently large, especially on the
horizontal-radial component, and the peak in the ellipticity curve is
consequently well defined. For the second higher mode, however,
analysis is not straightforward. Only a small portion of the disper-
sion curve is clearly visible in a range between 9 and 12 Hz and,
from the observation of the theoretical curves, the strong influence
of the third mode makes the picked maxima deviate from their true
location to lower slowness values. This effect reflects on ellipticity,
which shows a good amplitude match only in a limited portion.

If we decrease the number of receivers, the analysis is more
complex. Using configuration ‘selection 1’ allows us to obtain the
correct value of ellipticity for the fundamental mode only (Fig. 8b2).
Nothing can be said for higher modes that are no longer clearly
identifiable in terms of dispersion. ‘Selection 2’ gives better results
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Figure 7. Selected receiver configurations we used for the synthetic tests M2.1, M2.2, M10.2 and M11.2. The three subarrays share the same central station,
but the diameter increases progressively from ‘selection 1 to 3’. An additional configuration was considered, using all the available 39 receivers.
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Figure 8. Dispersion and ellipticity probability distributions of the model M2.1. Statistics are performed using values picked from both vertical and horizontal-
radial components. Resolution limits are included in the dispersion histograms (kmin with solid line, kmax/2 with dashed line and kmax with dotted line). For
clarity, the ellipticity values out of resolution range are not included. Manually picked ellipticity is thus presented (in yellow the fundamental mode, in red the
first higher mode and in green the second higher) with theoretical curves for comparison (solid lines).
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(Fig. 8c2). In this case the resolution limits match the high energy
region of the first higher mode, clearly identifiable over a wide range
of frequencies. Nothing can be obtained for the second mode, whose
dispersion values cannot be picked. Finally, in ‘selection 3’, aliasing
phenomena are unfortunately too close to the high energy region of
the dispersion curves. This problem also reflects on ellipticity values
for both the fundamental and first higher modes. Both progressively
deviate from the true solution when they approach the Nyquist
wavenumber limit (Fig. 8d2).

3.1.2 Model M10.2

The model M10.2 presents some additional structural complexity.
Here, to simulate a moderate gradient of the shear wave velocity,
two overlapping sedimentary layers are included. However, the lon-
gitudinal wave velocity contrast has been drastically reduced at the
bedrock interface, a condition common for water-saturated sand or
any analogous high-porosity material.

It is interesting to notice a phenomenon observable at about 5 Hz,
where the fundamental mode Rayleigh wave gives rise to apparent
bifurcation. This is our working hypothesis: the f –k method we use
is based on the assumption of plane waves propagation, while in
practice close noise sources generate spherical wave fronts. For this
reason, on the horizontal component, a small fraction of Love waves
will always be decomposed and projected onto the radial compo-
nent. The array, therefore, will erroneously interpret this residual as
a coherent (nevertheless very weak) in-plane wave propagation phe-
nomena. The number of employed receivers and the array geometry
influence the final result. It is not surprising that using all 39 avail-
able sensor locations, the Love wave contribution is clearly visible
and undistorted (Fig. 9a1). Conversely, its influence is too weak to
be correctly resolved if we use small configurations (Figs 9b1, c1
and d1). In such cases the result is mainly controlled by the range of
resolution (e.g. comparing selections 1 and 3 at 4 Hz, respectively
outside and inside the resolution limits) and other external factors
like the local Rayleigh to Love energy ratio. The effect is less evident
in model M2.1, even though it has the same receiver configuration
and similar type and distribution of noise sources as model M10.2.
Therefore, we assume that an increase in the Love waves energy
contribution caused by the different velocity structures might be
present.

Our results here are similar to those obtained from the elaboration
of model M2.1 and are to a certain extent better. In particular, in
‘selection 2’, the second higher mode is now partially identifiable,
even if in a narrow range of frequencies (Fig. 9c2). Moreover, in
‘selection 3’, the first higher mode is closer to the theoretical curve,
although the fundamental mode is still slightly overestimated in the
right flank of the curve (Fig. 9d2). That overestimation may occur
because of the previously mentioned higher energy content of Love
waves in this frequency range.

3.1.3 Model M11.2

This last synthetic model is the most complex, consisting of stacked
horizontal soft layers with decreasing velocities (a negative gra-
dient) down to the bedrock. Its dispersion pattern shows moder-
ate complexity, with modal curves close to apparent intersection
(Fig. 10a1). This sometimes leads to a difficulty in clearly identify-
ing the correct slowness values in the histogram plot. Nevertheless,
it is still possible to obtain good results for fundamental and higher
modes.

The Rayleigh wave fundamental mode is always clearly identi-
fiable when we use all four types of receiver configurations. The
corresponding ellipticity is in most cases close to the theoretical
solution (Fig. 10a2). An exception is present in the high frequency
region above 12 Hz. Here the influence of the first higher mode is
strong and reflects on the retrievable ellipticity, which in ‘selection
1 and 2’ is slightly underestimated (Figs 10b2 and c2). In ‘selec-
tion 2’, additionally, the fundamental mode ellipticity is definitely
overestimated between 3 and 4 Hz.

Model M11.2, however, shows the smallest energy content of
higher modes in comparison to the two previous tests. The first and
second higher modes are reasonably identifiable if we use all avail-
able receivers, but ellipticity is only correctly retrieved for a limited
portion of these modes. Furthermore, using the selected configura-
tions 2 and 3, the frequency range where good results are obtainable
is drastically reduced, because the dispersion curves of the higher
modes are not clearly retrievable from the slowness–frequency plane
(Figs 10c2 and d2). This problem is due to their low energy content.
In such situations, we urge a conservative definition of ellipticity to
avoid biased results.

3.2 Real test case: the town of Visp

To test the method in a real situation, we conducted an experiment at
two different locations in the neighbourhood of the town of Visp in
southern Switzerland. From a geological point of view, this area is
a Quaternary sedimentary basin consisting of horizontally layered
fluvial deposits (Roten et al. 2006, 2008). Despite the valley’s typical
V-shape, it is sufficiently wide to assume one-dimensionality, an
assumption required by the frequency–wavenumber method and
still valid for the upper layers. The total thickness of the basin
progressively varies in relation to the distance from the valley axes.
However, for our station locations, the depth of the bedrock can
be locally estimated to be 100 m for ‘Array 01’ and 160 m for
‘Array 02’. Also the topography at the measurement locations is
not particularly irregular and a plane free surface can be assumed.
The bedrock, constituted by gneiss in the northern part of the basin
and metamorphosed mesozoic limestone in the south, ensures a
moderate contrast of impedance at its interface.

For the first test location, a single array of 14 stations has been
set up (Fig. 11). For the second, two separate array configurations
with different radii were employed, of 14 (‘configuration 1’) and
11 (‘configuration 2’) stations, respectively. The acquisition was
performed using 5 s triaxial velocimeters. For each array, together
with dispersion curves and ellipticity results, the receiver geome-
try, the geographical location in the area of Visp and the results
from single-station H/V spectral ratio analysis (Fig. 12) are thus
presented.

3.2.1 Array 01

After frequency–wavenumber analysis of this data set, the Rayleigh
dispersion curve for the fundamental mode is clearly retrievable
in the frequency range between 3 and 12 Hz (Fig. 13a1). Al-
though the histogram shows a moderate scattering of the picked
values, the corresponding ellipticity is well identified. Most prob-
ably, higher modes are present in the wavefield, as indicated by
the presence of high amplitude values in the ellipticity plot. How-
ever, the difficulty in following the corresponding dispersion curves
in the slowness–frequency plane makes identifying the elliptic-
ity extremely questionable. Nevertheless, we can separate these
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Figure 9. Dispersion and ellipticity probability distributions of the model M10.2. Results are comparable to those analyzed in data set M2.1. Here, however,
the influence of Love waves fundamental mode might be stronger (a1, dashed magenta line) and not entirely removable by polarization analysis, as can be
inferred from the apparent bifurcation of the observed Rayleigh dispersion curve.
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Figure 10. Dispersion and ellipticity probability distributions of the model M11.2. This case represents one of the most complex, because the shear wave
velocity has a negative gradient. Identifying the correct dispersion curve is not always possible, especially for higher modes, due to apparent intersection of
modes at specific frequencies.
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Figure 11. Location of the two array measurement sites in the area of Visp (Switzerland). Units are in Swiss coordinates. For the ‘array 01’ test, a single
configuration of 14 receivers was used (in blue). For the ‘array 02’ test, two overlapping configurations of 14 (in red) and 11 receivers (in green) were employed
separately.
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Figure 12. Standard single-station H/V spectral ratios from the central sensor of ‘array 01’ and ‘array 02’ in Visp. The two curves are visibly affected by a
disturbance around 2.5 Hz, presumably of industrial origin (a pump or a compressor), which is also observed on the entire Rhone plain.

contributions from the fundamental mode, a feature not possible
using single-station H/V spectral ratios (Fäh et al. 2008).

3.2.2 Array 02

To extend the frequency range of resolution, the ‘Array 02’ experi-
ment was performed with two separate configurations of increasing
diameter. From the analysis of ‘configuration 1’, we obtained good
results. The fundamental mode dispersion curve is clearly identifi-
able, and the corresponding ellipticity is also well defined (Figs 13b1
and b2). In contrast, identifying higher mode dispersion is more
complex but possible if we compute and compare several different
elaborations. We must adjust progressively the processing parame-
ters such as the tolerance level for relative maxima identification in
the slowness–azimuth plane, and the number of aggregation classes

of the histogram distribution. The ellipiticities of the first and sec-
ond higher modes appear reliable, showing a pattern similar to those
obtained from synthetic models.

‘Configuration 2’ extended the resolution limits of the previous
elaboration to lower frequencies (Figs 13c1 and c2). The funda-
mental mode matches reasonably well the results obtained from
‘configuration 1’ for dispersion and ellipticity. For higher modes,
the same scheme of elaboration previously introduced has been em-
ployed. However, slight differences are observable. In particular, the
amplitude of the first higher mode is shifted to lower values, when
compared with the corresponding curves obtained from ‘configura-
tion 1’. In practice this can be induced, other than by the influence
of aliasing, because in real cases approximating a perfect 1-D struc-
ture is not strictly valid. Indeed, an array of such large aperture
may sample the wavefield at points where the ground conditions are
not perfectly identical. This would influence the higher modes that
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Figure 13. Dispersion and ellipticity probability distributions of the two array measurements performed in Visp. As in the previous cases, the curves are
manually extracted for dispersion and ellipticity (in yellow the fundamental mode, in red the first higher mode and in green the second). To make results
qualitatively comparable, all graphs are presented with the same scale used for synthetics. As expected from the corresponding receiver geometry, curves from
‘configuration 1 and 2’ partially overlap.

are generally more sensitive than the fundamental to small-scale
variability.

4 D I S C U S S I O N A N D C O N C LU S I O N S

The frequency–wavenumber method we propose can retrieve the
ellipticity of Rayleigh waves for the fundamental and, with some
limitations, higher modes. In comparison to single-station H/V
spectral ratios, we can now distinguish and separate the differ-
ent wave types and, consequently, minimize the influence of Love
waves. The amplitude distortion due to SH standing waves is auto-

matically removed within beamforming by destructive interference
of the out-of-phase contributions.

Reliable results are obtainable for the fundamental mode of
Rayleigh waves, but reasonable results are also achievable for higher
modes, whenever the corresponding dispersion curve is well iden-
tified in the slowness–frequency plane. We notice some slight dif-
ference between the values of ellipticity obtained from separately
identifying maxima on the vertical and the horizontal components.
Amplitude ratios from signals picked on vertical components are
generally more stable over the whole frequency range and closer to
theoretical ellipticity. By contrast, results obtained from analysing
the horizontal-radial direction tend to be slightly overestimated
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(∼5–10 per cent, depending on the number of receivers), especially
at high frequencies. This result is probably due to the residual influ-
ence of SH waves on that component. In this second case, however,
identifying higher mode dispersion is generally more accurate. We
suggest the combined and simultaneous use of the two components
to compensate for the contributions and improve the final statistics.

The quality of retrievable ellipticity curves depends on the com-
plexity of the structural model, the array geometry and the noise
level. We notice that dispersion curves close to apparent intersec-
tion (phase velocity differs less than about 50 m s−1) can produce
deviations of the amplitude values, due to the difficulty that the
adaptive filter has in separating the different contributions. Sig-
nals with a low energy content that can hardly be resolved in the
slowness–frequency plane can lead to unreliable ellipticity values.
As a general rule, signals with a power amplitude lower than about
two times the average noise power level should be rejected. A pro-
gressive reduction in the number of the employed seismic receivers
drastically restricts the resolution of the method. This will occur for
resolution bounds and amplitude distortion. Sparse spatial sampling
can lead to insufficient minimization of the body waves, as well as
progressively increased distortion induced by uncorrelated noise.
We suggest the use of a number of receivers higher than 15, but in
any case not less than 10, to reconstruct the correct ellipticiy. More-
over, if the receiver configuration is too irregular, the presence of
high-amplitude sidelobes in the beampattern cannot be completely
minimized by the adaptive filtering. That effect introduces a pro-
gressive scattering in the results. Thus, we suggest optimization of
the array geometry.

When different array configurations of increasing size and over-
lapping resolution bounds are available, we must compare the cor-
responding segments of ellipticity and dispersion curves to place
additional quality control on the final results. Portions of curves that
present a good agreement between different configurations can be
considered a reasonable measure of true ellipticity. In contrast, we
suggest a conservative approach in cases of progressive mismatch:
avoid those curves that lack a clear behaviour or those whose cor-
responding mode of propagation cannot be unequivocally defined.
This is particularly important with real complex structures, where
the local variability might lead to large deviations in surface wave
velocity and energy content (especially for higher modes) within
small distances.

The possibility of including the retrieved ellipticity as a constraint
for inverting structural models is, at the moment, in the testing phase
and no definitive conclusions are yet possible. A more accurate
analysis in this direction is planned, and the improvement in using
this technique for site characterization will be examined. However,
further investigations must be performed on the proposed method
to explore its full possibility and application.
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Movie. 3-D plot showing the relation between Rayleigh parti-
cle motion (ellipticity), slowness and frequency. Processing has
been done with three-component array analysis. Colours are as for
Fig. 5.
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