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S U M M A R Y
Frequency domain decomposition (FDD) is a well-established spectral technique used in civil
engineering to analyse and monitor the modal response of buildings and structures. The method
is based on singular value decomposition of the cross-power spectral density matrix from
simultaneous array recordings of ambient vibrations. This method is advantageous to retrieve
not only the resonance frequencies of the investigated structure, but also the corresponding
modal shapes without the need for an absolute reference. This is an important piece of
information, which can be used to validate the consistency of numerical models and analytical
solutions. We apply this approach using advanced signal processing to evaluate the resonance
characteristics of 2-D Alpine sedimentary valleys. In this study, we present the results obtained
at Martigny, in the Rhône valley (Switzerland). For the analysis, we use 2 hr of ambient vibration
recordings from a linear seismic array deployed perpendicularly to the valley axis. Only the
horizontal-axial direction (SH) of the ground motion is considered. Using the FDD method, six
separate resonant frequencies are retrieved together with their corresponding modal shapes.
We compare the mode shapes with results from classical standard spectral ratios and numerical
simulations of ambient vibration recordings.
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1 I N T RO D U C T I O N

The shape of an earthquake signal can heavily be altered during
its propagation from the source to the observation point. One of
the most severe modifications of the earthquake signal comes from
the reverberation of the seismic wavefield in the uppermost few to
100 m of the Earth structure, where large variability of the geo-
logical and geophysical conditions is present (e.g. Borcherdt 1970;
Joyner et al. 1981; Anderson et al. 1996). This effect, related to
the resonance of the system, is most pronounced in sedimentary
basins with complex 2-D/3-D geometry and irregular topography,
where strong velocity contrast exists (e.g. Bard & Gariel 1986;
Geli et al. 1988). The interaction of the earthquake wavefield with
the structure may lead to additional phenomena, such as focusing
or defocusing effects of the wavefield and the development of edge-
generated surface waves (e.g. Vidale & Helmberger 1988; Field
1996; Hisada & Yamamoto 1996; Chavez-Garcia et al. 2000; Bindi
et al. 2009). These phenomena are responsible for the generally
larger ground-motion in sedimentary basins.

The development of 2-D resonance is to be expected in narrow,
deep alpine valleys, where the seismic velocities contrast between
sediment fill and underlying bedrock is high (Bard & Bouchon 1985;
Steimen et al. 2003). The effect on ground motion can be severe,
with amplification factors of 10 and more, often well localized in

delimited areas of the basin, further associated with duration of
several tens of seconds, as reported by Trifunac & Brady (1975)
for typical soft sediment sites. Moreover, the frequency bands in
which amplification occur often match the resonant frequencies of
buildings and structures, typically between 0.5 and 10 Hz (Anderson
et al. 1986).

Despite its relevance, 2-D/3-D resonance of sedimentary basins
is a hardly predictable phenomenon. Often, numerical methods are
employed to model the complex 2-D/3-D-shaking scenario (e.g.
Fäh & Suhadolc 1994; Frischknecht & Wagner 2004; Smerzini
et al. 2011). In this case, however, an accurate knowledge of the
subsoil structure is needed, which is frequently not available due
to the rather high costs of the geophysical investigations. Direct
approaches, which are based on the analysis of real earthquake
events, are generally preferable (e.g. Kagami et al. 1982; King
& Tucker 1984). In low seismicity regions, however, the lack of
recordings makes such approach not always feasible.

Nowadays, direct techniques based on the analysis of the ambi-
ent vibration wavefield (often named ‘seismic noise’) have demon-
strated to be convenient and reliable alternative to the conventional
seismic methods to infer important information on the underground
structure. Most common ambient-vibration techniques are the sin-
gle station horizontal–oververtical Fourier spectral ratio (or H/V,
see Bonnefoy-Claudet et al. 2006 for an exhaustive reference list)
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and the family of array techniques (f–k and SPAC, e.g. Asten &
Henstridge 1984; Asten 2006; Poggi & Fäh 2010). The former ap-
proach allows a fast and relatively precise estimation of the SH-wave
fundamental frequency of resonance (f0) of the site (Lachet & Bard
1994), while the latter group is useful to retrieve the velocity struc-
ture of the site (mainly S-wave velocity as a function of depth, and
to a lesser extend P-wave velocity) by inversion of observed surface
wave dispersion curves.

Ambient vibration can be used to directly characterize the reso-
nance behaviour of the sedimentary basins, for example by mapping
the variations in the fundamental frequency of resonance over ex-
tended areas in shallow basins (e.g. Ibs-von Seht & Wohlenberg
1999; Guéguen et al. 2007; Le Roux et al. 2012; Poggi et al. 2012),
or by identifying 2-D resonances using techniques such as site-to-
reference spectral ratios (also called standard spectral ratios, SSR,
e.g. Yamanaka et al. 1993; Lermo & Chavez-Garcia 1994; Roten
et al. 2006). This last approach, however, can only provide rough
nodal information of the resonant mode shapes, which is essen-
tial to discriminate and sort the system eigenfunctions. Moreover,
the frequency resolution of the amplification peaks is usually in-
sufficient to determine more than the lowest two eigenfrequencies
(Roten et al. 2006). This is often due to the difficulty in selecting
the appropriate location for the reference station; the ambient vibra-
tion wavefield outside the basin might not be sufficiently correlated
with the inner recordings, while inside it might be difficult to fully
remove the input motion from the system response.

In order to improve the measurement of mode shapes and nodes,
the frequency domain decomposition (FDD) method (Brincker et al.
2001) is applied to synchronous array recordings of ambient vi-
bration. The FDD method is a popular seismic technique used in
mechanical and civil engineering for system response analysis. It
basically relies on singular value decomposition of the signal’s
cross-power spectral density matrix to retrieve the eigenfunctions
of the system. With this method, once a resonance frequency is
identified by a maximum in the signal cross-power spectrum, the
corresponding eigenvector is extracted and interpreted as represen-
tative of the modal shape of the system at that frequency.

FDD method has been first applied to borehole seismic array
recordings by Guéguen et al. (2011) for the evaluation of the
1-D seismic response of the soil column. The same approach has
later been applied to complex geological structures by Ermert et al.
(2014) to observationally characterize the resonance of 2-D alpine
sedimentary basins. In this paper, we validate the method on a the-
oretical base from a seismological perspective and by comparing
results from real recordings to numerical simulations of ambient
vibrations. We first test the method on a dataset previously acquired
by Roten & Fäh (2007) in Martigny (Rhône valley, Switzerland,
Fig. 1). Nearly 2 hr of three-component recording are available
from the experiment, which consists in a linear array of three-
component seismometers deployed along the transversal section of
the basin. We analyse the axial (or SH) ground motion direction
of the valley. Both SSR and FDD techniques are applied to the
recordings in the frequency range 0.1–1 Hz and under the assump-
tion of dominant 2-D resonance behaviour in the wavefield. With
FDD, up to six separate resonant frequencies are identified with a
clear corresponding modal shape, which is not possible with SSR.
The same processing scheme (SSR and FDD) is subsequently ap-
plied to a set of stochastically generated synthetic recordings of
ambient vibrations from 2-D numerical simulation of the Rhône
valley. Theoretical results are then compared to observations, in or-
der to investigate the robustness of the method and of the working
assumptions.

Figure 1. Deployment of the linear array of 10 three-component seismo-
logical stations in the Rhône valley (Switzerland) close to Martigny (Roten
& Fäh 2007). The reference station (in blue) used for the SSR method is
also shown, but not used for the analysis with FDD. Units are metres on the
Swiss coordinate system (CH-1903).

2 W O R K I N G A S S U M P T I O N S A N D
NA M I N G C O N V E N T I O N

In a theoretical 2-D case, the perpendicular or in-plane (P–SV)
and axial or out-of-plane (SH) components of ground motion are
separated (orthogonal) and do not interact with each other. Such a
representation is an advantageous simplification, as it allows a more
compact treatment of the wave propagation phenomena, separately
for the two directions. In this study, in particular, we focus on the
axial (SH) direction of motion, whose results are easier to interpret.
This is done in order to validate the reliability of the FDD method.

Elongated alpine valleys can be considered a good approxima-
tion of 2-D structures. In this case, the SH component is namely
oriented along main axis of the valley, while P–SV lies on its cross
section. Development of SH resonance modes in a 2-D environment
can be described using the naming convention proposed by Bard &
Bouchon (1985). According to this formalism, modes are progres-
sively sorted using an incremental two indexes approach; first index
always describes the number of nodes at the surface along in the
horizontal (x) direction, while second index enumerates the nodes
on the vertical (z) axis (e.g. Fig. 2).

3 F D D

The FDD method is a spectral technique introduced by Brincker
et al. (2001) to characterize and monitor the system response of
mechanical systems and civil structures, such as buildings (e.g.
Michel et al. 2010) and bridges (e.g. Goulet et al. 2013), when
excited by an unknown stochastic input. The method relies on the
acquisition of synchronous signals from multiple (array) recordings.
As main advantage compared to other response analysis techniques
such as the transfer function method, this technique does require
neither a reference outside the system nor the prior knowledge
on the loading forces, as the system response contributions are
separated from the recorded motion by factorization of the signal’s
cross-power spectral matrix. As a major assumption, the presence
of a stochastic (diffuse) wavefield can be associated to a random
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Figure 2. Schematic representation of 2-D resonance in a simplified sedi-
mentary valley section. In this example the displacement of the SH11 res-
onant mode is shown with colour (rigid bedrock is assumed). On the free
surface, the ground motion is sampled by a seismic array of n stations (red
triangles).

distribution of sources in space and time. Therefore, the method
theoretically suits well with the recording of ambient vibrations.

In the following, we present the basic principles of the method
using formalism suitable to describe wave propagation in a 2-D
sedimentary basin. For a more general description of the method
we refer to Brincker et al. (2001).

As first, we consider a simplified description of a 2-D valley as in
Fig. 2. We assume the presence of a certain number of noise sources
randomly distributed, whose wavefield excites the resonance modes
of the structure at discrete resonance frequencies. Because of the
simplification to the 2-D case, the axial contribution of the wavefield
(SH) does not interact with the perpendicular motion (P–SV), so
that we can restrict our analysis either to the SH or the P–SV case
independently. In this case, we focus on the SH motion, which is
easier to treat mathematically.

In our model, n measuring locations (the seismic receivers) are
deployed in a linear array on the free surface of the valley. Equal
spacing between receivers is not a necessary condition, but it is
a convenient simplification. If we restrict our analysis in the nar-
row frequency band around a resonance frequency of the basin
(ω = ω0), the ground motion related to the associated mode shape
can be modelled at each receiver location as a harmonic spatially sta-
tionary signal modulated with a modal shape function, which only
depends on the resonance frequency and the spatial coordinates of
the receiver:

USH (x, t) = P(ω0)M(x, ω0) cos(ω0t + ϕ) + η(x, t), (1)

where P(ω0) is the energy of the signal, M(x, ω0) is the mode shape
along the valley at the resonance frequency ω0, ϕ is the initial phase
and η(x, t) is some additive realization of uncorrelated noise.

In the frequency domain and at the frequency corresponding
to that specific resonant frequency ω0, eq. (1) can be identically
represented as:

USH (x, ω0) = P(ω0)M(x, ω0)e− jϕ + η(x, ω0). (2)

Considering all the n discrete receiver locations of the array, the
ground motion can be similarly expressed in a more compacted
vector notation as:

�U SH (ω0) = [USH (x1, ω0), USH (x2, ω0), . . . , USH (xn, ω0)]T

= P(ω0) �M(ω0)e− jϕ + �η(ω0), (3)

where T stands for transpose.

Note that, as the modal shape vector should not carry any signal
energy information, the following has to be satisfied:

‖ �M(ω0)‖ = 1. (4)

The cross-power spectral density matrix Ĉ(ω0) can then be ob-
tained by computing the expected (E) value of all the cross-products
between pairs of receivers along the array (as a further notation sim-
plification, the dependency on frequency is implicitly assumed):

Ĉ(ω0) = E

[
�U SH

(
�U SH

)h
]

= E
[

P2 �M �Mh + P �M�ηhe− jϕ + P�η �Mh
e jϕ + �η�ηh

]
, (5)

where h stands for Hermitian transpose (complex conjugate). Com-
puting the expectation under the justified assumption that noise and
signal are uncorrelated, the mixed terms from the cross-product
with the noise vector vanish (Poggi & Fäh 2010). Similarly, assum-
ing that the uncorrelated noise is a zero mean Gaussian process with
variance σ 2, the last term of eq. (5) reduces to the product of the
noise variance times an identity matrix Î of size n × n (n being the
number of receivers):

�η�ηh ∼= σ 2(ω0) Î . (6)

Therefore, the cross-spectral density matrix simplifies to:

Ĉ ∼= P2 �M �Mh + σ 2 Î . (7)

The cross-power spectral density matrix is positive semi-definite
and Hermitian; its singular value decomposition can be expressed
in the form:

Ĉ = V̂ ŜV̂
h
, (8)

where Ŝ is the diagonal matrix of the real eigenvalues and V̂ is the
matrix of eigenvectors. By substituting eq. (8) in eq. (7) and moving
the noise contribution to the left-hand side we then obtain:

V̂ ŜV̂
h − σ 2 Î ∼= P2 �M �Mh

. (9)

Because of the orthogonal property of the eigenvector matrix

(V̂ V̂
h = Î), eq. (9) can be then rewritten as:

V̂ ŜV̂
h − V̂

(
σ 2 Î

)
V̂

h = V̂
(

Ŝ − σ 2 Î
)

V̂
h ∼= P2 �M �Mh

. (10)

From eq. (10) is then clear that the eigen-decomposition of Ĉ
directly provides an estimate of the modal function and the signal
power at the analysed frequency. In the ideal case where a single
signal is present at frequency ω0, the eigenvalue matrix can be
reduced to a scalar corresponding to unique non-zero eigenvalue
S1, while the eigenvector matrix has the only significant eigenvector
corresponding to S1.{ �V 1 = �M

S1
∼= P2 + σ 2 . (11)

If the noise variance is much smaller than the signal amplitude
(P2 � σ 2), the noise contribution to the eigenvalue (or power-)
spectrum can simply be neglected. If not, an additive amplitude
factor has to be accounted for. Moreover, suppression of uncorre-
lated noise contribution by expectation is in reality never perfect
(because of the finite nature of the time series), leading therefore
to progressively biased results, especially for low energy overtones.
The frequencies at which resonance occurs are generally unknown
a priori; nonetheless these can be identified by locating correlation
maxima on the eigenvalue spectrum computed for a reasonable fre-
quency range. After that, resonant mode functions can be identified
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and extracted by the analysis of the corresponding complex eigen-
vectors. In practice, the imaginary part is dropped, while the real
part fully characterizes the modal shape.

It has to be mentioned that, in reality, several modes and more
signals can impinge and overlap at each frequency. Under the as-
sumption that close modes are orthogonal in space and the attenua-
tion small, exact modal shapes can still be retrieved (Brincker et al.
2001). As well, the noise level might be significant and a certain
degree of correlation can be present between noise and resonant
modes. Nevertheless, also in such a case singular value decompo-
sition of the cross-power spectral density matrix can be helpful in
separating out the different modal contributions. Here, the different
modal functions are ordered through their eigenvalues, depending
on the energy level and the coherence of the analysed modal signal.

4 M O DA L A NA LY S I S O F T H E R H Ô N E
VA L L E Y U S I N G A M B I E N T V I B R AT I O N S

The FDD method has been tested on approximately 2-hr ambient
vibration recordings from a linear array performed by Roten & Fäh
(2007) in the Rhône valley close to Martigny (Figs 1 and 2). In the
following section, we present the most relevant information about
the experiment setup and describe the main processing steps and
results obtained from modal analysis using FDD. A comparison with
the application of SSR method is also presented, to better highlight
the improvements achieved.

4.1 Geological settings

The Rhône valley is a deeply incised alpine valley of glacial origin.
From the tectonic point of view, the study area lies on the Penninic
front, which separates the sedimentary units of the Helvetic do-
main (to the north) from the high-grade metamorphic rocks of the
Penninic nappes (towards South). The crystalline basement is in
many areas largely exposed (Mont Blanche massif). More specif-
ically, in the Martigny region the geophysical bedrock is mostly
constituted of gneiss and schists.

A high-resolution seismic reflection study conducted during a
national research project (NRP20, Pfiffner et al. 1997) revealed the
geometrical complexity of the valley, which exhibits an asymmetric
geometry and a mixture of U- and V-shaped transversal sections.
Some parts of the valley are strongly overdeepened, so that the
glacial and postglacial quaternary deposits forming the valley fill
reach thicknesses of up to about 900 m. Geological interpretations
(Fig. 3) of the seismic survey NRP20 and the analysis of local
borehole logs indicate that the unconsolidated sediments fill (mostly

Figure 4. Example of 10 min of ambient vibration recordings (horizontal-
axial direction of the valley axis) from the Martigny linear array in Fig. 1.
No evidences of relevant transients of anthropogenic origin are visible on
the traces, as reported at other sites in the Valais region.

till and fluvio-lacustrine deposits) can be related to the last glacial
maximum (Pleistocene).

4.2 The ambient vibration linear array

The data set consists in 1 hr 50 min of synchronous three-component
recordings of ambient vibration from a linear array deployed per-
pendicularly to the valley axis. For the experiment, 10 seismological
stations were used (Quanterra Q330, 24bit), equipped with triaxial
velocity sensors (Lennartz 3C, 5s natural frequency). The array was
designed with an extension of about 2500 m and regular spacing of
approximately 200–250 m to cover the whole valley section. One
additional station was deployed outside the valley border on out-
cropping rock, to be used as reference for standard Fourier spectral
ratios. The horizontal components of the sensors were originally
aligned to the N–S and E–W directions. Recordings have been later
rotated to produce a set of equivalent components along and perpen-
dicular to the valley axis (Fig. 4). The measurement setup assumes
2-D behaviour. Therefore, the proper segregation and analysis of
the SH and P–SV components of the ground motion is achieved
through this decomposition. In the more general 3-D case this is not
necessary. GPS signals were used for time synchronization.

4.3 Ambient vibration processing using FDD and SSR

The first step of FDD processing is the estimation of the signal
covariance matrix. To do this, ambient vibration recordings from
the linear array were first divided in short windows of exactly 50 s,
with 50 per cent overlapping. Shorter and longer time windows
have also been tested during the experiment, but 50 s provided
the best trade-off between spectral resolution and minimization of
the smearing effect from the presence of uncorrelated noise. Each
window was subsequently tapered with a Tukey (cosine) function

Figure 3. Geological cross-section of the Rhône valley close to Martigny (modified from Pfiffner et al. 1997). The bedrock is typically asymmetric, but with
a nearly flat horizontal layer infill (with the exception of unit A and B1 at the southern edge).
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(α = 0.2) and then the Fourier spectrum calculated in the range
0.1–1 Hz. Above and below these frequency bounds no useful results
could be obtained, as we verified. A consistent windowing scheme
was subsequently used for the SSR processing.

For each discrete frequency in the range, then, a number of cross-
power spectral density matrices have been estimated by stacking of
spectral cross-correlations over blocks of 50 consecutive windows.
Stacking had the goal of minimizing the effect of the uncorrelated
noise by stabilizing the phase-delay expectation between receiver
pairs and enhancing the coherent part of the signal. Finally, singular
value decomposition was performed for each separate block, and
the eigenfunctions averaged over all consecutive blocks to improve
the quality of the estimation.

It should be noticed that the phase of the eigenvectors in the
complex plane is initially arbitrary. Therefore, in order to perform a
proper averaging of the modal shapes without reciprocal cancella-
tion of the eigenvectors of opposite sign, a phase correction should
first be applied (Burjnek et al. 2010). In this study, the amount of
phase rotation θ0 is found by maximizing the length of the real part
of the first eigenvector

−→
V1 (Vidale 1986):

θ0 = argmax
θ∈[0,π ]

⎧⎨
⎩

√√√√ n∑
k=1

[	 (V1,k cos θ + iV1,k sin θ )]2

⎫⎬
⎭ . (12)

The eigenvectors are finally rotated in the complex plane by the
optimum angle θ0 before averaging. Such approach showed to be
advantageous as it allows a more robust estimation of the modal
shapes, and eventually a better definition of the corresponding un-
certainty.

4.4 Results of the modal analysis

As highlighted by Roten et al. (2006), processing ambient vibra-
tions using SSR on a linear array provides only limited resolution
on the 2-D resonance characteristic of the basin. In the case of
Martigny, using SSR led to a clear identification of the first four SH
resonance frequencies, up to about 0.52 Hz (Fig. 5). The reconstruc-
tion of the corresponding modal shapes is however very incomplete
and at some frequencies even doubtful. Above 0.6 Hz no further
information can realistically be extracted. This can partially be due
to the difficulty in selecting a proper reference for SSR of ambi-
ent vibrations; when outside the basin—possibly on outcropping
bedrock, as in the present case—the reference often shows low cor-

Figure 6. Cross-power density (or eigenvalue) spectrum from FDD analysis
of the Martigny linear array. All the 10 eigenvalue curves are presented for
comparison, while the red arrows indicate nine identified resonant modes.
Note that the apparent maximum at about 0.2 Hz is only due to the corner of
the instrument response and does not represent a real feature of the valley.

relation with the recordings on sediments. Conversely, a reference
inside the basin might not properly remove the effect of the input
motion.

Application of the FDD method provides better results. From
the analysis of the eigenvalue spectrum in the range 0.1–1 Hz, at
least nine separate modes are clearly evident as consecutive maxima
(Fig. 6). Probably, two more modes could be identified between 0.8
and 1 Hz, but are too uncertain to be considered for further analy-
sis. Subsequently, by evaluation of the corresponding eigenvectors
at the identified resonance frequencies (Fig. 7), the related modal

Figure 5. Interpolation of standard spectral ratio results computed for each station of the array profile in Fig. 1. The first four SH resonant modes are clearly
identifiable in the range 0.29–0.52 Hz, while interpretation is more difficult above these frequencies. This is likely due to the presence in the ambient vibration
wavefield of wave contributions (e.g. surface waves) not separable using the SSR approach.



620 V. Poggi et al.

Figure 7. Example of the sequence of 10 eigenvectors (real part) for the
mode identified at 0.38 Hz (2nd overtone). The first eigenvector (on top)
provides the actual modal shape, but analysing the remaining eigenvectors
is nevertheless useful in doubtful cases, as it provides information about low
energy modes and/or about the influence of nearby frequencies.

shapes are extracted. It should be noted that, to correctly address
the different modes, it is generally advantageous to analyse not only
the first eigenvalue–eigenvector pair, but also the subsequent ones.
This might be useful in the case of modes very close in frequency,
but with rather different energy. Here, the stronger mode can hide
the presence of the weaker one, and only an accurate evaluation of
all the eigenvalue–eigenvector pairs might disclose it.

In the study case, modal interpretation is clear up to the 6th
overtone (Fig. 8). Above that, the modal addressing starts to be
problematic because of the limited spatial sampling of the resonant
wavefield. Probably, having denser station coverage could have pro-
vided enough resolution to discriminate additional higher modes.
As evident from Fig. 8, the six modes have progressively increasing
number of nodes on the horizontal direction and are expected to
be the SH0n, with n = 0–5. Conversely, modes with nodes on the
vertical direction are not resolved from this analysis. The modal
shapes of the identified modes show the location along the array
profile where the maximum (antinodes) and the minimum (nodes)
resonance effect should be expected at a particular resonance fre-
quency. Such a complete map of the mode shape can hardly be
obtained by standard techniques such as the spectral ratio, which
only presents the absolute amplitude information of the signal.

5 VA L I DAT I O N W I T H S Y N T H E T I C
R E S U LT S

In order to validate the reliability of the results from FDD process-
ing, we produced a set of synthetic ambient vibration recordings
aiming to emulate the linear array of Martigny. For the simulation
we used a 2-D finite-differences modelling code for SH-wave propa-
gation (SOFI2D-SH, Bohlen 2002), following a stochastic approach
for the generation and superposition of randomly distributed noise
sources. The numerical model of the Rhône Valley (Fig. 9) was set
up collecting information from previous ambient vibration studies
(Steimen et al. 2003; Roten et al. 2006; Roten & Fäh, 2007) and geo-
physical measurements available for the area (Pfiffner et al. 1997).
Both sedimentary infill and bedrock were modelled as viscoelastic
materials (no rigid basement assumed). Seismic velocities, densities
and quality factors of the final model are summarized in Table 1.
The simulated recordings have then been processed with SSR and
FDD processing, and results later compared with observations from
direct measurements.

5.1 Generation of the synthetic ambient vibration
recordings

To simulate synthetic ambient vibration recordings in a 2-D sedi-
mentary environment we used a stochastic approach based on full-
wave propagation modelling. At first, we produced 36 separate syn-
thetic Green’s functions of 60 s each using a 2-D staggered-grid (on
stress–velocity nodes) viscoelastic finite-difference modelling code
(SOFI2D-SH, Bohlen 2002) developed at the Karlsruhe Institute of
Technology (KIT). Only the axial (SH) component of motion was
simulated.

Each simulation was performed assuming a point source, dis-
tributed along an array of 36 elements with 100 m between and at
fixed depth of 1200 m. Even though such source distribution can be
questionable for the simulation of ambient vibration recordings—
where surfaces waves are generally the target (e.g. Cornou 2004)—
the approximation is suitable for our purposes, since we only focus
on stochastic excitation of 2-D resonant modes of the structure.
Therefore, such a linear array of sources would properly illumi-
nate the basin from a broad set of incidence angles, as expected
in the theoretical case of a pure diffuse field. The source function
consisted of a Dirac pulse filtered with a 4th order anticausal low-
pass filter with 2 Hz corner frequency. The simulation was limited
to a frequency range between 0.1 and 1 Hz, imposed considering
the expected resonance characteristics of the target site. Time step
(0.001 s) and grid size (800 × 300 gridpoints with 5 m distance be-
tween) of the numerical model were defined according to maximum
frequency and minimum wavelength of the simulation. Absorbing
boundaries were dimensioned (200 m width with 5 per cent damp-
ing) in order to avoid any influence of the model borders on the
resonance behaviour of system. The receiver array consisted of 36
elements located at the surface of the model with 100 m between
them.

By then stacking 1000 random realizations of those 36 synthetic
Green’s functions we generated 600 s of ambient vibration record-
ings (Fig. 10). Before stacking, each realization was modulated
adding certain random time delay (0–600 s) and random ampli-
tude (from 0.5 to 1, normalized units), to properly account for the
stochastic composition of the ambient vibration wavefield. No ad-
ditional uncorrelated noise was superposed on the final recordings.
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Figure 8. Modal shapes (real part of the first eigenvector) of the first six modes identified on the power-spectrum of Fig. 6. White dots indicate the receiver
location along the array. Nodes and antinodes can be easily identified for each mode. Above the fifth overtone it is not possible anymore to correctly reconstruct
the modal shape, due to the insufficient spatial sampling.

5.2 SSR and FDD processing of synthetic recordings

In order to validate the method, the simulated ambient vibration
recordings were processed, as for the real case, using both SSRs
(Fig. 11) and FDD (Fig. 12). For better comparison, the process-
ing parametrization scheme was defined as close as possible to that
used with observed recordings. Some differences were nevertheless
present, principally due to different length of the recordings. This
has a direct impact on the number of windows stacked for the es-
timation of the signal correlation matrix. Consequently, in order to
test the sensitivity of window number/length on eigenfunction reso-
lution, some alternative parametrizations have also been examined
(e.g. A, B and C of Fig. 12, Table 2) and results compared.

Synthetic recordings were computed in the frequency range from
0.1 to 1 Hz. In the low-frequency part of the simulation (<0.6 Hz)
we found good agreement with observed results, while at high fre-
quencies (>0.6 Hz) progressive deviations have been spotted. These
deviations are nevertheless addressable mostly to the oversimplifi-
cation of the numerical model, especially related to the uncertainty
on velocity distribution and the unknown quality factors. As high-
lighted by Ermert et al. (2014) using numerical modal analysis,
differences in model characteristics can significantly affect the de-
velopment of higher modes. In the case of Martigny, modes above
the fourth overtone might be too strongly dependent on the uncer-
tain structural characteristics of the model (especially in the first



622 V. Poggi et al.

Figure 9. (a–c) Example of simulated Green’s functions for three source locations at same depth (1200 m) but different horizontal position along the profile.
(d) 2-D numerical model of the Rhône valley. The sediment infill consists of four flat-horizontal layers with velocity increasing with depth (see Table 1). The
36 source locations are presented with yellow stars, while receivers are indicated with red triangles.

Table 1. Parameters of the numerical model of Martigny. Values are modified from
Roten & Fäh (2007).

Thickness (m) S velocity (m s–1) Density (kg m–3) Quality factor

1st Layer 50 277 1900 25
2nd Layer 130 443 2000 25
3rd Layer 280 620 2000 25
4th Layer 540 828 2000 25
Bedrock – 2890 2500 100

tens of metres) to produce a meaningful comparison. Consequently,
since in this study we only target the validation of the FDD approach
on 2-D geological structures, results for frequencies above 0.6 Hz
are not presented and further discussed for the sake of conciseness.

SSR and FDD provided the same frequency values for the first
four modes of resonance (Table 3). With respect to observations,
simulated recordings provided a slightly lower value for the fun-
damental mode and the first overtone. This is likely related to the
incomplete knowledge of the model, particularly the simplified flat
layering and the uncertainty on the correct bedrock depth and shape.
As expected, SSR provided better results with synthetic than with
real recordings. This is possibly due to the high coherency of the
simulated wavefield and the use of a proper reference, which sits on
ideal bedrock and carries unbiased information of the input motion.
However, this is hardly expected in real case. Eigenvalue spectrum
(Fig. 12) and mode shapes (Fig. 13) from FDD are consistent with
observations. In particular, a very satisfactory approximation is ob-

tained for the mode shapes, including both nodal and antinodal
point locations. As in the case of individual frequency values, small
deviations on mode shapes can be addressed to the simplification of
the numerical model and to the epistemic uncertainty on the model
parameters. Such differences are nevertheless negligible, given that
any model can hardly give resolution as good as direct experimental
analysis.

Result of FDD processing might be subsequently used to re-
fine the structural characteristics of the model. Modal shapes, for
instance, might be used as additional constrain for the inversion
of the bedrock shape, or as direct proxy to highlight asymmetries
and heterogeneities of the sedimentary structure. Complementary,
higher modes can also be useful to improve the accuracy on the
velocity model at shallow depths, which is in most cases very low.
Some of these issues have been raised by Ermert et al. (2014), but a
full 2-D inversion strategy that would account for such information
still has to be defined.
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Figure 10. Stochastic simulation of ambient vibration recordings from the Martigny model. On top the whole simulation is plotted (36 traces, equal
normalization), while on the bottom a 50 s zoom window (normalized to trace maximum) is shown.

Figure 11. Standard spectral ratios of the synthetic ambient vibration
recordings of Martigny. As reference we used the first receiver of the array,
which sits on theoretical bedrock. Fundamental mode and first three over-
tones can easily be identified on the spectrum, together with the locations of
the antinodal points along the profile.

Figure 12. FDD eigenvalue spectrum of the simulated linear array of
Martigny. Identified resonance frequencies are compatible with the results
from SSR (Fig. 11). A sensitivity test was performed comparing different
window length/number. Selected results are from parametrization B, with
same window length as in the processing scheme used for real recordings
(Table 2).
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Table 2. Parameters for the sensitivity test performed compar-
ing different window length/number.

Scheme Window length (s) Number of stacked windows

A 25 47
B 50 23
C 40 29

Table 3. Comparison of the first four resonance frequencies
identified using FDD on observed (Obs) and simulated (Syn)
recordings of the Martigny linear array.

SH00 (Hz) SH01 (Hz) SH02 (Hz) SH03 (Hz)

Obs. 0.29 0.38 0.44 0.51
Syn. 0.28 0.36 0.44 0.51

6 D I S C U S S I O N A N D C O N C LU S I O N S

In this paper, we discuss the effectiveness of an alternative ap-
proach to assess the resonance characteristics of 2-D basin structures
through spectral decomposition of synchronous array recordings of
ambient vibrations. As major outcome of the proposed method, it is
now possible to obtain, together with the information about the reso-
nance frequencies of the structure, the corresponding modal shapes.
In particular, the location of nodes and antinodes of the resonant
wavefield can now be correctly represented. This is hardly obtain-

able with simpler spectral techniques and using ambient vibrations,
as for SSRs. Comparing results obtained from direct observation
and from synthetic Green’s function computation demonstrated the
high resolving power and accuracy of FDD technique as a tool for
site response analysis and ground motion prediction. Moreover, the
method proved to be advantageous especially in urban environments
and in low-seismicity regions, as the use of ambient vibration makes
the survey of simple implementation (the acquisition time is only
limited to few hours) and relatively inexpensive (no necessity of
artificial source).

As evident from the processing, the spatial sampling of the wave-
field at the surface plays a major role on the quality of the final result.
Modal-shape discrimination is facilitated, as more sampling points
per wavelength are considered. Consequently, low-energy higher-
modes of the structure are potentially better resolved when using
a denser spatial sampling. In this study, using 10 stations allowed
retrieving modes up to 6th overtone very reliably, but additional
modes can possibly be obtained by using additional receivers or
closer station configurations (e.g. investigating smaller portion of
the valley at a time). Complementary, the duration of the analysed
signal has a direct influence on the statistical significance of the re-
sult. With a 2-hr measurement, sufficiently stable results have been
obtained for the investigated frequency range. Using long record-
ings is generally advisable in presence of strong uncorrelated noise
(e.g. in cities). In such a case, higher-modes can emerge from the
spectrum only with longer window stacking, due to the improved
signal-to-noise ratio. Here, nearly 2000 periods of the fundamental

Figure 13. Comparison between modal shapes from FDD analysis of real (in red) and simulated (in black) ambient vibration recordings of the Martigny site.
White dots indicate the measuring location along the array (adjusted to match the different coordinate systems of the real and the simulated array). Frequency
values from the synthetic case are shown as reference.
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mode have been recorded, which corresponds to what is generally
advised in the civil engineering literature (1000–2000, according to
Cantieni 2005).

One open question is the possibility of identifying SH modes
with nodes in the vertical direction (e.g. SH10, according to the
nomenclature of Bard & Bouchon (1985)). In this study no evidence
of this phenomenon—which is theoretically predicted—is given.
Several explanations can be proposed. The hypothesis that modes
with nodes in the vertical direction have too similar frequencies
with respect to their horizontal counterpart (and could therefore not
be distinguished) is neglected by simple analytic examples provided
by Bard & Bouchon (1985), as well as numerical modal analysis
(Ermert et al. 2014). Most likely, the energy of such modes is
relatively low, as they are not fully excited. This would explain why
they do not emerge on the spectral decomposition, as their presence
is masked by the development of dominant modes with nodes in
horizontal direction. Moreover, Ermert et al. (2014) observed that
nodes in vertical direction only occur quite ‘late’ in the modal
sequence, that is at relatively high frequencies, for basins with strong
velocity gradients in the uppermost part. This might be the case for
Martigny. Alternatively, the formal separation of these two kinds of
modes might be an unrealistic oversimplification in complex 2-D
structures, for example in the case of strongly asymmetric valleys
or with laterally heterogeneous infill.

As possible follow-up of this study, we plan to validate the re-
liability of the FDD method in the case of P–SV motion. Ermert
et al. (2014) performed a test on real recordings, but an accurate
comparison with results from a full numerical wave-propagation
simulation is still missing. This will further improve our under-
standing and interpretation, as in such a case the partition of energy
between the P and SV components leads to more complex modal
patterns than the simple SH case. Further simulations will also be
useful to further understand the sensitivity of 2-D modal shapes and
resonance frequencies to the structural parameters of the model, in
order to access the possibility of using such information for direct
inversion of the soil properties. The next step will be then extending
the analysis to the full three-component ground motion in complex
3-D media. Additionally, given the demonstrated high resolution of
the method, FDD modal analysis might also be useful to directly
predict surface ground motion, for instance by empirically retrieve
the approximated linear response of the system using the modal
superposition principle and complementary to quantify the pres-
ence of non-linearity, as reported in Guéguen et al. (2011).

A C K N OW L E D G E M E N T S

We would like to acknowledge the contribution of Daniel Roten who
has made the array data available to us. We extend our thanks to
reviewers Dino Bindi and Philippe Guéguen and to Associate Editor
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