

Using Ambient Vibration Array Techniques for Site Characterisation

Dispersion Curve Inversion

Lecture

- What's an inverse problem?
- Inversion techniques
- Neighbourhood Algorithm (NA, Sambridge, 1999)
- Conditional parameter spaces
- Dispersion curve inversion examples

SESARRAY PACKAGE

2. Inversion Techniques

Ranking models vs Inversion target

$$
\text{Misfit} = \sqrt{\sum_{i=1}^{n_F} \frac{(x_{di} - x_{ci})^2}{\sigma_i^2 n_F}}
$$

 n_F Number of frequency samples

2. Inversion Techniques

Ranking models vs Inversion target

$$
\text{Misfit} = \sqrt{\sum_{i=1}^{n_F} \frac{(x_{di} - x_{ci})^2}{\sigma_i^2 n_F}}
$$

 n_F Number of frequency samples

A gentle 2D misfit function...

Imagine yourself without a map (nor a GPS) ...

... at the same place on a stormy day.

Where is the exit? (= minimum misfit)

Where is the exit ?

Start from anywhere and go down?

Possible shapes for a misfit function

2. Inversion Techniques

Forward problem:

- Analytic or numerical processing
- Only one solution

Inverse problem:

- Trial and error to adjust parameters of the model
- Simplex downhill method
- Brute force uniform search (gridding)
- Least square methods (based on derivatives)
- Brute force Monte Carlo sampling
- Simulated Annealing
- Genetic Algorithm
- Neighbourhood Algorithm
- Generally not only one solution

A. Uniform search (gridding)

- **-** If nd > 3 : number of forward computations are prohibitive
	- **+** Complete exploration of the parameter space
	- **+** Optimum error estimates

Misfit

0.5

1.0

2.0

5.0

Parameter 2

Least Square, Simplex, Gradient methods, ...

Parameter 1

- **-** Easily trapped in local minima
- **-** Non-uniqueness <=> choice
- of starting model
- Bad error estimates
- Cannot include prior information
- **+** High dimensionality
- **+** Few forward computations

C. Random search (Monte Carlo)

Parameter 1

- **+** Not too bad exploration of the parameter space
	- **+** Good error estimates

D. Oriented random search (~ 1990) (SA, GA, and NA)

Parameter 1

- **+** Requires less of forward computations than MC
- **-** Max nd ~ 25-50
- **+** Not too bad exploration of the parameter space
	- **+** Good error estimates

Misfit

(Sambridge, 1999)

Parameter 1

Ns new samples generated into Nr selected cells

Few tuning parameters (Ns, Nr)

Based on Voronoi division of the parameter space

~ SA and GA (better according to Sambridge) Misfit 0.5 1.0 2.0 5.0

(Sambridge, 1999)

Parameter 1

Ns new samples generated into Nr selected cells

Few tuning parameters (Ns, Nr)

Based on Voronoi division of the parameter space

~ SA and GA (better according to Sambridge) Misfit 0.5 1.0 2.0 5.0

(Sambridge, 1999)

Parameter 1

Ns new samples generated into Nr selected cells

Few tuning parameters (Ns, Nr)

Based on Voronoi division of the parameter space

~ SA and GA (better according to Sambridge) Misfit 0.5 1.0 2.0 5.0

(Sambridge, 1999)

Parameter 1

Ns new samples generated into Nr selected cells

Few tuning parameters (Ns, Nr)

Based on Voronoi division of the parameter space

~ SA and GA (better according to Sambridge) Misfit 0.5 1.0 2.0 5.0

(Sambridge, 1999)

Parameter 1

Ns new samples generated into Nr selected cells

Few tuning parameters (Ns, Nr)

Based on Voronoi division of the parameter space

~ SA and GA (better according to Sambridge) Misfit 0.5 1.0 2.0 5.0

(Sambridge, 1999)

Parameter 1

Ns new samples generated into Nr selected cells

Few tuning parameters (Ns, Nr)

Based on Voronoi division of the parameter space

~ SA and GA (better according to Sambridge) Misfit 0.5 1.0 2.0 5.0

NA for dispersion curves (DC) inversion

High number of forward computation required (~50,000)

Computation of DC for 1D elastic model = numerical process not always stable

(Wathelet, 2005)

==> Battery of tests to automatically tune computation ==> Improvement of algorithm efficiency (~ ms/model)

4. Conditional parameter spaces

- fixed thicknesses, Poisson's ratios fixed, free Vs in each layer (classical approach in Herrmann's codes)

- free thicknesses, free Vs, free Vp, fixed density BUT physical limits: conditions between Vs and Vp

Wathelet, M. (2008). An improved neighborhood algorithm: parameter conditions and dynamic scaling. Geophysical Research Letters, 35, doi:10.1029/2008GL033256

Sambridge: box (fixed range for all parameters)

Solution to introduce conditions: variable change

A modified Neighborhood kernel: irregular parameter boundaries

From model A add "valid" random perturbations so that model B stays in cell k

Loop over all axes

December 6th-12st 2008, Thessaloniki, Greece

Conditions in a Neighbourhood Algorithm

Parameterization of a ground structure

Vp and Vs as free parameters: Poisson's ratio limitations

Poisson's ratio =

Usual values for soft soil & rocks From 0.2 to 0.5

• Thickness versus depth parameters

 $depth[i] > depth[i-1]$

Avoid Low Velocity Zones

 $V[i] > V[i-1]$

Uncontrolled prior distribution due to a sum of parameters

- Parameters for non-uniform layers (gradients)
	- Vt = Velocity at top
	- Vb = Velocity at bottom

Power law gradient: Vb>Vt & Vb<Vt+delta

Conversion between Vs-Vp ground model and a conditional parameter space

5 parameters

200 < TopVp0 < 5000 m/s 200 < TopVp1 < 5000 m/s 150 < TopVs0 < 3500 m/s 1 < DVs0 < 100 m 150 < TopVs1 < 3500 m/s TopRho0=2000 kg/m3 Rectangular limits Special limits

Poisson's ratio TopVp1 > TopVp0 TopVs1 > TopVs0

- Uniform or gradient layers (power law or linear)
- Fixed parameter range for prior information
- Uncorrelated Vp, Vs and density profiles
- Depth and/or thickness
- Full control over Low Velocity Zones
- Custom conditions (impedance contrast)
- Fine Poisson's ratio limits

Dynamic parameter scaling

An interesting property of Voronoi cells:

Effect of axis scaling

NA explores always best along the smallest axis range

Boosting exploration capabilities

Static scaling

Dynamic scaling

Various random seeds: robustness

5. Dispersion curve inversion

Virtual test site: Vp and Vs structure

Parameterization of a 2-layer model

Vp

Vs

Density

Vp

Vs

Density

Parameterization of a 3-layer model

Uniform \blacktriangledown Linked to $Vs1$ \blacktriangledown Bottom depth $\vert \bullet \vert$ Vp0: 200 to 5000 m/s Fixed Uniform ◉ $\overline{\mathbf{x}}$ $Vp0 < Vp1$ ▼ Vp1: 200 to 5000 m/s Fixed Power law Linked to Not linked O $\overline{}$ \blacktriangledown Number of sub-layers 5 ÷ Bottom depth \blacktriangledown Top Vs0: 150 to 3500 m/s Fixed $DVs0: 5 to 50 m$ Fixed Bottom Vs0: 150 to 3500 m/s Fixed Power law Linked to Not linked $\overline{\mathbf{x}}$ $Vs0 < Vs1$ ○ ▼ \blacktriangledown \div Bottom depth Number of sub-layers 15 \blacktriangledown Top Vs1: 150 to 3500 m/s Fixed $DVs1: 5$ to 50 m Fixed Bottom Vs1: 150 to 3500 m/s Fixed Uniform ◉ $X \triangleright S1 < Vs2$ ▼ Vs2: 150 to 3500 m/s Fixed ◉ Uniform \vert $Rho0:2$ t/m3 $\mathbf{\overline{X}}$ Fixed

2-layer models or 3-layer models What's the best solution?

We can merge all models

ONLY

if the misfit is computed in the same way

Uniform

Vs13: 150 to 3500 m/s

Uniform

Vs 14: 150 to 3500 m/s

C

 \odot

Parameterization of a 15-layer model

=> Identical to the classical approach (Herrmann, linerization, gradient methods)

Vs

...

 $\overline{}$

 \blacktriangledown

 $Vs12 < Vs13$

 $Vs13 < Vs14$

Fixed

Fixed

Linked to

Bottom depth

DVs13: 50 m

Not linked

 $\overline{}$

X Fixed

Vp

Density

December 6th-12st 2008, Thessaloniki, Greece

▾╎

Parameterization of a 15-layer model versus Limited number of layers (2-3)

Velocity Slowness

Parameterization of a 15-layer model

Controlling the presence of low velocity zones

Vs

December 6th-12st 2008, Thessaloniki, Greece

December 6th-12st 2008, Thessaloniki, Greece

December 6th-12st 2008, Thessaloniki, Greece

$10₁$ $10-$ 10 $\begin{array}{c}\n\text{20} \\
\text{21} \\
\text{22} \\
\text{30}\n\end{array}$ $40 -$ 40 $40 -$ 50 50 50 800 1200 1600 2000 1200 1600 2000 800 1200 1600 2000 400 400 400 800 $Vs(m/s)$ $Vs(m/s)$ $Vs(m/s)$ 0 0 0 $10 10 10 \frac{20}{6}$
 $\frac{20}{30}$ $\begin{bmatrix} E \\ E \\ E \\ 30 \end{bmatrix}$ $\begin{array}{c} 20 \\ E \\ E \\ 0 \\ 30 \end{array}$ 40 40 40 50_o 50 0.002 50 0.004 0.006 0.006 0.002 0.004 0.002 0.006 0.004 Slowness S (s/m) Slowness S (s/m)

No constraint Showness S (s/m)

Smooth depth No constraint 5harp depth

Effects of depth contraint Effects of depth contraint

Higher mode Higher mode

Joint inversion of H/V peak Joint inversion of H/V peak

Conclusions

- **New Neighborhood Algorithm for parameter spaces with irregular boundaries**
- **Exploration capabilities improved**
- Better exploration means also better data fit
- Less forward computations needed to achieve the same data fit
- Robust results: all seeds return the same model distribution