e Using Ambient Vibration Array Techniques
for Site Characterisation

CAPON's f-k estimator (1967,1969)
a.k.a.
high-resolution f-k
maximum likelthood f-k estimate
minimum variance distortionless look estimate
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signal model

shift and sum
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discrete spatial sampling of a continuous process
consequences. aliasing (sampling theorem)

at least 3 samples per period, wavelength

timedomain AT < T,,;,/2

spatial domain Az <\’ . /2 * apparent

ML

spectral resolution limit
time domain Aw =27/((N —1)AT)

spatial domain Ak =27/((N — 1)dmin)
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discrete spatial sampling of a continuous process
So far we dicussed as consequences:

aliasing (sampling theorem)
spectral resolution limit

No comment so far to the typically observed shape:

e.g. for 1D-equidistant array typical sinx/x
Where does this come from?
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from continuous infinite to finite discrete...
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from continuous infinite to finite discrete...
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from continuous infinite to finite discrete...
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Beampower

sinx/x shape in spectral domain (wavenumber)
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Introduce sensor weights as spatial taper equivalent
to windowing function in time series spectral analysis!

Generalization of array output:
weighted shift and sum

N

Z W; (LU)XE (Lu‘) exp(_jgﬁ)
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Introducing matrix notation for compact writing
) k)
k)

o7

)

W1 (w)exp(J
Wa(w) exp(J
Ws3(w)exp(jk

- Wy (w) exp (jEFN)

Y Wi(w)Xi(w) exp(—jikr;)

1=1

' > B(w, k) = AW)EX(w)
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From beam (array output) to beampower ...
B(w, k) = Aw)? X (w)

— —

(@)X (@)(AW) X (W) =

—

= generalized beamformer
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abbreviated quantity ...

Rw) = X (w)X (w)¥

IS the primary source of information for all f-k estimates

R(w) has many names:

Cross spectral matrix
spatio-spectral matrix
spatial correlation matrix
sensor covariance matrix....
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Capon‘s method (1969)

Based on the formulation of the generalized beamformer
2 .
‘ — AWV R(W)A(w)

B,

Capon's significant contribution consists now in the
following idea (and of course in the consistent
mathematical formulation of a solution to it):

Find optimum weights for the generalized beamformer
which provide an f-k estimate which has unity gain
at the true wavenumber and is minimized elsewhere!
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Find optimum weights for the generalized beamformer
which provide an f-k estimate which has unity gain

at the true wavenumber and is minimized elsewhere!
Put into other words: f-k estimate should approximate

at best a 3D delta function (in kx, ky and f) or overall
cross spectral power is to be minimized:

W RWH > to be minimized

Further requirement:
Array output equals observation for true wavenumber
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Array output equals observation for true wavenumber

... formulated in maths ...
W;(w) X (w) exp(—jk7) = X;(w)

... leads to the condition ...
CM(w) ] WAT =1

TVQ(L:J) Vi o
Ws(w) / e Alw) =

 W(w)
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Problem to be solved:

Minimize TVRH-"’H with constraint 17 AL =1

1
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A minimization task with subject to constraints
can be solved using the formalism of
Lagrangian multipliers

For the given problem, the following solution is obtained:

W = {E—léﬁ'T}/{(éﬁH )Tﬂ—léJ"T}

Inserting this result in order to obtain a formulation
for the f-k spectral estimate, leads to:

- 1
Feapon(w, k) = AR
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NOTE:
The weights are adaptive and tune the shape of the
spatial taper function in dependence on the wavenumber

W = {E—IAIT}/{(AIH)TR—IA!T}

But: the weights don‘t have to be explicitely estimated!
- 1
PCapon(w-; k') — = — 1 —
Al* R ]-A!
The information is contained in the structure of the
cross spectral matrix
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Capon‘s method put into practice:

»Estimate cross spectral matrix
»Invert cross spectral matrix
»Sweep over wavenumber space
using trial steering vectors by applying:
- 1

Foapon(w, k) = ===
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Figure 4.12 Power Output for the Minimum Vanance Distortionless Look (MVDL)
Method for a Single Wave at k, = 0.25 rad/m Propagating Along the Main

Axis of the 16 Sensor Uniform Linear Array. The MVDL output is shown  Figure 8.17 Example of Multiple Signals Amriving at a Frequency = 9.875 Hz.
with the dark line, and the FDBF output 15 shown with the light line for
reference.

from Zywicki, 1999, Ph.D. Thesis, http://www.zywicki.com

due to necessary stabilization of CSM inversion
and ,goodness’ of CSM estimate from data!
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Estimation of cross spectral matrix

howto?

( )

X% K050 X050 . XX
X, ()X (f) X, ()X, (f) 5O%0 o XXy
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XuaPX0 () Xy PX () Xyad% @) o Xy (OXya )

\ /

Matrix elements contain phase difference between sensors!
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In order to obtain good estimates of the phase
differences an averaging procedure is required!
Further, the assumption of stationarity of the
wavefield has to be introduced.

Variance reduction of cross spectral matrix estimates
are usually obtained by the block averaging procedure:

(R)ij = % Z Xi(w)X;(w)”

Xi(w)Xj(w)”
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block-averaging s
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Figure 3. Segmentation and overlapping of a time-domain component of the
signal vector. Each tapered block is transformed into the frequency domain via
an FFT.
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block-averaging in time domain equivalent to smoothing
over some bandwidth in frequency domain

as power spectrum computation
In spectral analysis of time series
(periodogram of frequency smoothing used
for variance reduction)

In both cases large overall time windows are needed
to obtain sufficient samples for averaging/(smoothing)

Implementation in geopsy: frequency smoothing
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Stabilization of cross spectral matrix before inversion
(avoiding singular CSM)

»By averaging/smoothing procedure

»By diagonal loading
R=(1-MNR+ A\

»By adding gaussian noise to all sensor observations
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