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Résumé

Le bruit de fond sismique est une technique de plus en plus utilisée en génie parasismique

pour estimer le profil de vitesse des ondes de cisaillement pour un site donné. Admettant

l’hypothèse qu’elles sont majoritairement composées d’ondes de surface, les vibrations am-

biantes enregistrées par un réseau de capteurs peuvent être utilisées pour déterminer la courbe

de dispersion. En général, cela fournit une courbe sur une large gamme de fréquences et cela

comporte l’avantage de ne pas nécessiter l’usage de source artificielle. A cause de l’incertitude

sur les données et des non-linéarités du problème, la solution de l’inversion des courbes de dis-

persion n’est pas unique. Les méthodes de recherche directe comme l’algorithme de voisinage

permettent l’investigation de tout l’espace des paramètres et l’introduction d’informations a

priori de manière rationnelle. Suite au nombre limité de paramètres pour l’inversion des ondes

de surface, elles constituent une alternative intéressante aux méthodes linéarisées. Au cours

de cette thèse, des outils efficaces basés sur l’algorithme de voisinage sont développés pour

obtenir les profils uni-dimensionel de Vs à partir d’enregistrements avec des sources actives ou

passives. Comme le nombre de modèles générés est habituellement grand avec ces méthodes

stochastiques, une attention particulière a été attachée à l’optimisation et à la qualité de la

résolution du problème direct.

Le code développé a été testé sur plusieurs modèles synthétiques, dont un est présenté

ici. Les effets de la gamme de fréquence disponible et l’influence de l’information a priori

sont particulièrement mis en évidence. Les modes supérieurs peuvent apporter des contraintes

supplémentaires lors de l’inversion mais ils posent également de nombreux problèmes quant à

leur identification correcte, pour laquelle un algorithme est proposé. Nous montrons aussi que

l’inversion des modes de Love et de Rayleigh est une technique prometteuse pour augmenter

la profondeur de pénétration de la méthode. De plus, nous avons développé un outil spécifique

pour l’inversion des courbes d’auto-corrélation qui prend en compte les incertitudes observées

sur les courbes expérimentales et les propage aux profils de vitesse inversés.

L’interprétation complète depuis l’acquisition jusqu’à obtention des profils de vitesse est

illustrée par deux exemples avec un champ d’onde synthétique et réel (Liège, Belgique). Les

informations déduites de forages, de tests de réfraction classiques, d’enregistrments avec des

sources actives, et de la fréquence du pic H/V sont analysées pour valider les résultats des

réseaux.
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Abstract

Microtremors are increasingly used in earthquake engineering to infer the shear-wave velocity

profile at a given site. Assuming they are mainly composed of surface waves, ambient vibra-

tions recorded by an array of sensors can be used to determine the dispersion curve. Generally,

it provides a large frequency band dispersion curve and it has the advantage of not requiring

artificial sources, making it particular suitable for urban applications. Due to the data uncer-

tainties and the non-linearity of the problem, the solution of the dispersion curve inversion is

not unique. Direct search methods like the neighbourhood algorithm allow the investigation of

the whole parameter space and the introduction of prior information in a rational way. Due

to the limited number of parameters in surface-wave inversion, they constitute an attractive

alternative to linearized methods. During this thesis, efficient tools based on the neighbourhood

algorithm are developed to obtain the one-dimensional Vs profile from passive or active source

experiments. As the number of generated models is usually high with stochastic techniques,

special attention is paid to the optimization and to the reliability of the forward computations.

The developed code has been tested on several synthetic models, among them one is pre-

sented here. The effects of the available frequency range and the influence of the prior infor-

mation are particularly emphasized. Higher modes might bring additional constraints during

the inversion but they also raise the crucial problem of their correct identification, for which

an algorithm is proposed. We also show that the inversion of Love and Rayleigh modes is a

promising technique to increase the penetration depth of the method. Moreover, we developed

a specific tool for the inversion of auto-correlation curves which takes into account the uncer-

tainties observed on experimental curves and propagates it to the inverted velocity profiles.

The whole interpretation chain from field acquisitions to the achievement of velocity profiles

is illustrated by two examples with synthetic and real wavefields (Liège, Belgium). Information

from boreholes, classical refraction tests, active surface wave experiments, and from the H/V

peak frequency are analysed to check the validity of the array results.
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Introduction

During the last twenty years, several major earthquakes (Mexico 1985, Loma Prieta 1989,

Kobe 1995, Izmit 1999, El Salvador 2001, Bam 2003, . . . ) were directly responsible of tens of

thousands of persons killed and injured. The damage to human infrastructures and the distur-

bances of the local life represent an inestimable cost for national and local authorities, usually

requiring international cooperation. Most of the cities and high populated areas are located

on soft sediments (valleys, estuaries, recent deposits, . . . ) the soil structure of which are prone

to amplify seismic waves (Murphy and Shah 1988, Bard 1994). This phenomenon is usually

called site effect or site amplification since the amplitude of the motion highly depends upon

the local properties of the soil. Consequently, the risk mitigation requires fine investigations of

each geological setting. The investments necessary with conventional techniques, i.e. boreholes,

are prohibitive for developing countries and for regions with a moderate seismic activity (e.g.

Western Europe). In this context, the European project SESAME (Site EffectS assessment

using AMbient Excitation, Project EVG1-CT-2000-00026) was initiated in 2001 to study the

reliability of low cost methods based on the measurement of ambient vibrations1. The focus

was put on two methods: the so-called H/V (Horizontal to vertical ratio) which became widely

used after the work of Nakamura (1989), and the more complex array measurements based on

the simultaneous recordings of the ambient vibrations at various locations. This thesis, which

has been partly financed by the SESAME project, focuses on the array methods, which aim at

inferring the one-dimensional shear-wave velocity profile at a given site.

Seismic wave propagation in a geological structure depends on its characteristics: the geom-

etry of the layers, the shear and compressional-wave velocities, the density, and the attenuation

factor inside each of them. For one-dimensional geological environments (property variations

limited to the vertical axis), it can be theoretically shown that the shear-wave velocity (Vs)

has the greatest influence. Conventional methods to access this parameter usually require the

drilling of invasive and expensive boreholes which might be very disturbant for the inhabitants

of dense cities. The determination of Vs in the layers close to the surface (down to few tens of

metres) is now possible without destructive methods thanks to the development of the surface

wave methods during the last fifteen years, i.e spectral analysis of surface waves (SASW, Stokoe

et al. 1989, Tokimatsu 1995, Foti et al. 2003, Socco and Strobbia 2004). Surface waves travel

1Also called ambient noise, microtremor, . . . However, the word ”noise” is ambiguous because it generally
designates all apparently random variations not explained by the current scientific model. For ambient vibra-
tion methods the noise is separated in coherent and incoherent noise. The first category contains valuable
information.

1
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along the ground surface (at the soil-air interface). In vertically heterogeneous media, surface

waves are dispersive: their velocity varies as a function of frequency, which in turn controls

their penetration depth (Aki and Richards 2002). This dispersion property can be used to

derive Vs versus depth through an inversion process (Herrmann 1994, Wathelet et al. 2004).

Though attractive on many aspects, the surface wave methods using artificial sources gen-

erally offer a restricted investigation depth (a few tens of metres usually) due to the limited

frequency range of the signals (Jongmans and Demanet 1993, Tokimatsu 1995). Moreover, in

various geological environment with thick soft sediments (e.g. 500 m for Grenoble in France),

the site effects depend also upon the properties of the deep structure. The improvement of the

penetration is possible through the use of higher energy sources rich of low frequency. In an

urban context, the use of explosive loads or mechanical generators is limited to avoid distur-

bance to the neighbouring houses and buildings. For regions with high seismicity and a dense

observation network, the experience of past events is intensively used for inferring the site dy-

namic response. However, for regions with a moderate seismicity, the observation networks are

less dense and there are fewer significant events. Consequently, it is necessary to develop other

techniques to calculate the site transfer function, for which Vs is a key parameter.

On the other hand, the frequency content of microtremor record is distributed over a wider

range and the measurement of ambient vibrations through an array of sensors has appeared

as a promising option to complement active sources (Asten and Henstridge 1984, Tokimatsu

1995, Satoh et al. 2001, Bettig et al. 2001, Nguyen et al. 2004, Wathelet et al. 2004). Noise

energy depends upon the source locations and upon the impedance contrast between the rocky

basement and the overlying soft sediments (Chouet et al. 1998, Milana et al. 1996). The main

hypothesis for using ambient vibrations is that they are dominantly composed of surface waves,

which allows the dispersion property to be used (Tokimatsu 1995, Chouet et al. 1998).

The properties of the sources that generate the measured ground excitation are generally

unknown. Consequently, the interpretation is generally a two-step process. First, the velocity of

the travelling waves at a given frequency is derived from the processing of simultaneous ground-

motion recordings at various stations. The common approaches used to derive the dispersion

curve from the raw signals can be classified into two main families: frequency-wavenumber

methods (Capon 1969, Lacoss et al. 1969, Kvaerna and Ringdahl 1986, Ohrnberger 2001) and

spatial auto-correlation methods (Aki 1957, Roberts and Asten 2004). At the second stage,

the dispersion curve is inverted to obtain the Vs (and eventually the Vp) vertical profile, as in

the classical active-source methods (Stokoe et al. 1989, Malagnini et al. 1995). Like all surface

wave methods, the obtained geometry is purely one-dimensional and is averaged across the

array, implying that the technique is not suitable when strong lateral variations are present.

Objectives

The objective of this work is the improvement of existing inversion techniques in the context

of ambient vibration methods in order to obtain Vs(z). A special attention has been paid to
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the reliability of the inverted profiles and to the possibility of including information from other

types of experiments in the inversion process.

The derivation of one-dimensional shear-wave velocity profiles from surface wave dispersion

curves is a classical inversion problem in geophysics, generally solved using linearized methods

(Nolet 1981, Tarantola 1987). The inversion of dispersion curves is known to be strongly non-

linear and is affected by non-uniqueness, i.e. various models may explain the same data set

with an equal misfit. Linearized methods behave poorly in such contexts and a Monte Carlo

like approach has been chosen here. During this thesis, we have developed a new code using

the neighbourhood algorithm (Sambridge 1999a) for inverting dispersion curves. The software

allows the inclusion of prior information on the different parameters and a major effort has

been made to optimize the computation time at the different stages of inversion. In particular,

we have re-implemented the dispersion curve computation in C++ language using Dunkin’s

formalism (1965). The code is tested on synthetic cases as well as on real data sets, combining

ambient vibrations and active-source data. In both cases, the role of a prior information for

constraining the solution is emphasized. Moreover, specific methods are proposed to invert the

auto-correlation curves to obtain directly the ground structure, to identify and to invert higher

modes, and to include frequency information measured with the H/V technique.

Aside, a software package has been developed for preparing array campaigns, storing, vi-

sualizing and analysing the recorded signals (open source project, GEOPSY). The techniques

for processing raw signals were revisited and the corresponding algorithms were implemented

in this unified platform dedicated to seismic prospecting.

Thesis outline

This document is organized in six chapters.

Chapter 1 recalls the available methods for processing the recordings of ambient vibrations.

An extention to active-source experiments is also detailed. The output of all these techniques

is the dispersion curve of surface waves (or a parent curve).

Chapter 2 summarizes all the general options that can be considered to infer the soil prop-

erties from an observed dispersion curve. The chosen algorithm (neighbourhood algorithm) is

presented with more details. A personal improvement of this technique is discussed at the end.

Chapter 3 presents the algorithm used for computing the dispersion curves for one-dimen-

sional models. A number of improvements are proposed to speed up the calculations and to

ensure a correct answer. The sensitivity of the dispersion curve to input parameters is tested

as well.

Between the inversion algorithm and the forward computation, a crucial step is the pa-

rameterization of the ground model. The parameter value ranges are chosen and the prior

information is included at this stage. Chapter 4 explains all the strategies for choosing param-

eter based on synthetic dispersion curve examples.

Chapter 5 details various uncommon inversions, that include higher modes, Love and Ray-
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leigh modes, the frequency information from H/V techniques, and the direct inversion of auto-

correlation curves.

Chapter 6, the array technique is tested on synthetic ambient vibrations with various signal

processing methods. The parallel interpretation of arrays of distinct apertures is a key aspect

to obtain unbiased dispersion curves, and hence correct Vs profiles. The processing techniques

are applied to array vibration measurements in the city of Liège, Belgium and the results are

compared to other prospecting methods (boreholes, seismic refraction, Cone Penetration Tests,

H/V).



Chapter 1

Measuring wave velocity

During this thesis, we mainly focus on the inversion of the dispersion curves. This first chapter

presents the experimental techniques that are commonly used to measure them. After the

development of the inversion tool in chapters 2 to 5, chapter 6 describes the whole interpreta-

tion chain from the experimental measurements of the dispersion curves (by the means of the

methods described in this chapter) to the inversion of the velocity profiles of test sites. The

discussion of chapter 6 is based on a synthetic and a real case.

Surface wave methods are divided in two main categories based on the kind of sources

that generate the observed signals, i.e. active and passive methods. The first ones record

vibrations generated by an artificial source the frequency band of which is generally above

2 Hz (Tokimatsu 1995). Their penetration depths are usually limited to a few tens of metres

(Jongmans and Demanet 1993, Tokimatsu 1995, Socco and Strobbia 2004). On the contrary,

ambient vibrations or microtremors are produced with sources of much larger spectra, making

both methods complementary for investigating deep geological structures (Nguyen et al. 2004,

Wathelet et al. 2004).

The determination of the dispersion characteristics (dispersion or auto-correlation curves)

from passive recordings is first reviewed. Frequency wavenumber (f-k, Lacoss et al. 1969,

Kvaerna and Ringdahl 1986), high resolution frequency wavenumber (Capon 1969, Horike 1985)

and spatial auto-correlation methods (Aki 1957, Roberts and Asten 2004) are the most popular

ones. The processing technique used in this thesis for active experiment is a particular case of

the general frequency wavenumber method. Additionally, the sensor layout deployed for the

active surface wave method is the same as for refraction surveys and allows the measurement of

Vp and Vs profiles on the first tens of metres, which brings valuable information for the inversion

of the dispersion curve (chapter 3).

1.1 Ambient vibrations

The main objective when processing ambient vibration recordings is to measure the velocity

of surface waves which varies with frequency. The first assumption is hence that the wavefield

mainly consists of surface waves. For a horizontally stratified soil structure, the measured

5
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velocities might be the body wave velocities (Vp and Vs) or the dispersion curve of surface waves

including the fundamental and the higher modes (Aki and Richards 2002). If the direction of

propagation is known and if one single wave dominates, the velocity can be calculated by picking

the arrival time at two sensors separated by a fixed distance. However, the ambient wavefield

is made of the superposition of many waves travelling in any direction. Picking is no longer

possible because the individual propagating waves cannot be identified, and more sensors are

necessary to scan all potential azimuths. Signal processing techniques are essential to retrieve

the apparent velocities. We restrict our work to the vertical component of the wavefield which

does not contain Love contributions.

Theoretically, better velocity measurements are achieved when numerous sensors are avail-

able to sample the wavefield at the ground surface. Ideally, the number of stations should be

greater than the number of waves present at one time (Asten and Henstridge 1984). Practically,

the ambient wavefield is recorded by a limited number of sensors for cost and logistical reasons

(ten to a few tens of elements per array, Chouet et al. 1997, Saccorotti et al. 2003, Scherbaum

et al. 2003). The three components are generally recorded simultaneously at each station. The

optimum of the array geometry is still a matter of debates. However, the array output must

be identical for all incident azimuths because there is generally no prior knowledge about the

characteristics of the ambient wavefield (Asten and Henstridge 1984). Hence, a roughly circular

shape is probably the best option. All sensors must not necessarily lay on the same circle, but

there must be a certain kind of rotational symmetry in the sensor positions. In section 1.1.1

on page 7, a quantitative method is proposed to analyse the efficiency of arrays.

Once the signals are recorded for a sufficient duration (at least half an hour, or longer

for deep soil structures that require low frequency information), they are processed with the

three techniques described hereafter, which extract the same velocity information from the raw

signals in three different ways. Agreement between the three methods is usually expected for

good quality results. Tests of the three processing methods on a synthetic and a real case are

given in chapter 6. Other methods, like multiple signal classification (MUSIC, Schmidt 1981,

Cornou et al. 2003) are not considered here.

1.1.1 Frequency-wavenumber method

Principles

The horizontal velocity is calculated for various frequency bands. The raw signals are first

divided in short time windows the length of which may depend upon the considered frequency

band. The optimum window length is discussed in sections 6.1.2 and 6.1.3 from synthetic

signal analysis. Eventually, a pre-processing method may be used to reject certain parts of the

measured signals (transient or saturated signals, Bard 1998). A Fourier transform is calculated

for the signal of each sensor after a proper cutting of the current time window (a 10% cosine

taper is applied). The frequency-wavenumber transformation itself is calculated in the frequency

domain on the cut signals.
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Frequency-wavenumber (f-k, Lacoss et al. 1969, Kvaerna and Ringdahl 1986) analysis as-

sumes horizontal plane waves to travel across the array of sensors laid out at the surface.

Considering a wave with frequency f , a direction of propagation and a velocity (or equivalently

kx and ky, wavenumbers along X and Y horizontal axis, respectively) the relative arrival times

are calculated at all sensor locations and the phases are shifted according to the time delays.

The array output is calculated by the summation of shifted signals in the frequency domain.

If the waves effectively travel with the given direction and velocity, all contributions will stack

constructively, resulting in a high array output. The array output divided by the spectral power

is called the semblance (Lacoss et al. 1969, Asten and Henstridge 1984). The location of the

maximum of semblance in the plane (kx, ky) provides an estimate of the velocity and of the

azimuth of the travelling waves across the array.

The velocity corresponding to the maximum of semblance is searched between limits which

depend upon each particular software implementation. This part is detailed on page 11. For

each time window, a velocity value is calculated, and an histogram is generally constructed for

each frequency band. Examples of such results are found in chapter 6.

In the case of waves travelling simultaneously in various directions (usual situation for

ambient vibrations), the assumption of uncorrelated signals may not be satisfied, leading to

incorrect velocity estimates (Goldstein and Archuleta 1987). With a limited number of sensors,

stacking during a long enough period of time (a few tens of minutes) is then necessary to obtain

correct velocity values. This issue will also be detailed in chapter 6.

Theoretical array response

The theoretical frequency-wavenumber response of an array is a semblance map that would

have been obtained for a single vertically incident plane wave ((k
(1)
x , k

(1)
y ) equal to (0, 0) in

equation 1.2). It is also called the array transfer function because the array output is the

convolution of the wavefield and of the theoretical frequency-wavenumber response. The nor-

malized theoretical array response in the (kx, ky) plane is given by

Rth(kx, ky) =
1

n2

∣
∣
∣
∣
∣

n∑

i=1

e−j(kxxi+kyyi)

∣
∣
∣
∣
∣

2

(1.1)

where n is the number of sensors in the array, and (xi, yi) are their coordinates. For one single

plane wave Si(f) = A(f)ej(xik
(1)
x +yik

(1)
y −2πft+φ) crossing the array at wavenumber (k

(1)
x , k

(1)
y ) an

at frequency f , recorded at sensor i, at time t and with a phase φ, the array output is

R(kx, ky, f) =

∣
∣
∣
∣
∣

n∑

i=1

Si(f)e−j(kxxi+kyyi)

∣
∣
∣
∣
∣

2

= n2A2(f)Rth(kx − k(1)
x , ky − k(1)

y ) (1.2)

where A(f) is the amplitude spectrum. The array output is equal to the theoretical response

translated by vector (k
(1)
x , k

(1)
y ) and multiplied by the square of the amplitude. For multiple
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plane waves travelling across the array, S(1) to S(m), the array output is

R(kx, ky, f) =

∣
∣
∣
∣
∣

n∑

i=1

(
m∑

l=1

S
(l)
i (f)

)

e−j(kxxi+kyyi)

∣
∣
∣
∣
∣

2

≤ n2
m∑

l=1

R(l)(kx, ky, f) (1.3)

where R(l) are the array outputs for single plane waves defined by equation (1.2), and S
(l)
i the

wave l recorded at station i. In this case, the array output is always lower than the sum of

translated theoretical responses, the maximum being reached when all waves are in phase.
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Figure 1.1: Theoretical array responses for 25 sensors. Array geometries: (a) circle, (d) Cartesian grid, and
(g) spiral. (b), (e), and (h) Theoretical array responses in the plane (kx, ky). (c), (f), and (i) Sections across
theoretical array responses for various propagation azimuths (628 values between 0 and 2π).

From equation (1.1), Rth always exhibits a central peak the value of which is one (kx and

ky = 0) and lateral aliasing peaks the amplitude of which is less than one. Beyond a certain

limit which is called the theoretical aliasing wavenumber, this pattern is repeated due to the

periodic nature of ejx. Below this theoretical limit, equation (1.2) shows that the position

of the highest peak of the array output is directly linked to the apparent velocity and the
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Figure 1.2: Theoretical array responses for 10 sensors. (a), (d), and (g) Array geometries. (b), (e), and (h)
Theoretical array responses in the plane (kx, ky). (c), (f), and (i) Sections across theoretical array responses for
various propagation azimuths (628 values between 0 and 2π).
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azimuth of the propagating wave. For a complex wavefield described by equation (1.3), and

assuming that all contributing waves are in phase to get equality, aliasing is likely to occur for

lower wavenumbers due to the summation of the lateral peaks of Rth. Hence, Rth is of prime

importance to define the potential aliasing limits (kmax) of the chosen array geometry. On the

other hand, it is obvious that the thinner the central peak is, the more capable is the array to

distinguish two waves travelling at close wavenumbers. The resolution limit (kmin) is controlled

by the width of the central peak. For simple array geometries, for instance a cartesian grid,

kmin and kmax are linked to the minimum and maximum distance between sensors. For usual

irregular array geometries, Rth is necessary for the definition of objective wavenumber limits.

We define practical rules for the aliasing and resolution limits from Rth, setting kmax at the

first peak exceeding 0.5 (or -3 dB) and kmin being measured at the mid-height of the central

peak (Woods and Lintz 1973, Asten and Henstridge 1984, Gaffet 1998). If the aliasing peaks

are less than the central peak, and if a single source is acting, kmax does not effectively limit the

power of the array. However for multiple sources, even if the aliasing peaks are less than the

central peak, the superposition may create artefacts leading to the confusion of aliasing peaks

with the main one. If the aliasing peaks are of the same order of magnitude as the main peak,

the wavenumber limit is always kmax/2. In a safe approach, it is better to limit the valid array

output to kmax/2 in all cases. These rules are compared to frequency-wavenumber output in

chapter 6.

Array geometry Number of sensors kmin kmax

Perfect circle 25 0.024 1.00
Cartesian grid 25 0.022 0.25

Spiral 25 0.036 2.75
Perfect circle 10 0.024 0.40

Three triangles 10 0.038 0.36
Irregular circle 10 0.026 0.15

Table 1.1: Properties of the array geometries. For each array, the minimum and maximum wavenumbers
(rad/m) deduced from the theoretical frequency-wavenumber responses in figures 1.1 and 1.2.

The theoretical array response is calculated for various array geometries containing 25 and

10 sensors in figures 1.1 and 1.2, respectively: a perfect circle (figures 1.1(a) to 1.1(c), and 1.2(a)

to 1.2(c)), a Cartesian grid (figures 1.1(d) to 1.1(f)), a perfect spiral (figures 1.1(g) to 1.1(i)),

an ensemble of three triangles rotated by 40◦ (figures 1.2(d) to 1.2(f)), and an irregular circle

(figures 1.2(g) to 1.2(i)). The aperture1 is always around 100 m. The grey curve of plots (c), (f)

and (i) are sections across the theoretical array response for various propagating azimuths. The

kmin and the kmax are estimated in table 1.1. The width of the central peak at its mid height

presents small variations versus the geometries. For instance, the perfect circle in figure 1.1(a)

has an aperture of exactly 100 m and a kmin around 0.024 rad/s. On the other hand, the spiral

array in figure 1.1(g) has an aperture of 98.5 m and a kmin around 0.036 rad/s. Hence, kmin

cannot be deduced from the aperture by a simple linear relationship. On another hand, kmax is

1Maximum distance between any pair of sensors
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strongly dependent upon the number of sensors and their geometries. When multiple waves are

travelling across the array at the same time, the performances of an array depend also upon the

”ground” level of its theoretical array response. For example, the rectangular array is almost

flat between 0.05 and 0.2 compared to the circular array, which means that two semblance

peaks separated by kmin are not affected by each other in the summation of equation (1.3).

The arrays of figure 1.2 with 10 sensors are more common than arrays with 25 sensors, but

their available wavenumber range between kmin and kmax is usually not large enough to obtain

a complete dispersion curve. Hence, various array apertures and geometries with overlapping

wavenumber ranges must be planned before any experiment. It can be based on a first guess

of the dispersion curve calculated with common properties for the expected geology. The

wavenumber ranges must cover the whole dispersion curve down to the expected resonance

frequency. This limit only applies to arrays for which the vertical components are processed.

Extention towards lower frequencies might be necessary if horizontal components are planned

to be processed (chapter 6).

Implementation

The f-k algorithm has been implemented in C++ as a plug-in module of the seismic signal

database GEOPSY2. The Fourier transform is calculated with the FFTW package (Frigo and

Steven 2005, www.fftw.org) which allows any arbitrary number of samples, not restricted to

powers of two.

In this work and for the f-k method, we consider the semblance as the ratio of the array

output over the spectral power. The search of the maximum of semblance is performed with

a rough gridding of the plane (kx, ky). The exact maximum is then refined within the eight

cells that surround the cell with the highest value. A secondary grid is constructed with 16

cells inside the area delineated by the preceding 9 cells (8+1). The cell with the maximum

semblance and its 8 surrounding cells delineate an area that it is 9/16 smaller than the original

area. The process is repeated until reaching a sufficient precision. The search is performed

in the wavenumber domain contrary to other implementations (cap, Ohrnberger 2001) which

work in the slowness domain. The advantage of the wavenumber domain is that the size of

the peaks are not varying with the frequency. Effectively, equations (1.2) and (1.3) show that

the array output is the sum of the translated theoretical array responses of the most energetic

waves, which do not decrease the size of the main peak. Consequently, in wavenumber domain,

the maximum of semblance can be searched for all frequency bands with the same grid step.

To not miss the true semblance maximum, the grid cell must be less than a half of kmin.

From the considerations of the preceding section, it is useless to search for peaks above kmax.

Moreover, the velocity of the semblance peak must be consistent with physical limits of the

Rayleigh or Love dispersion curves (section 3.1.5 on page 40). Consequently when calculating

the array output for a pair (kx, ky), if the velocity corresponding to the wavenumber (
√

k2
x + k2

y)

2Database with a graphical user interface (Qt libraries, www.trolltech.com) dedicated to seismic prospecting
and developed during this thesis. Its dynamic signal loader is able to work on very long recordings (hours) with
an efficient memory and time consumption. It works on any desktop PC (Linux or Windows) or Mac.
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and the current frequency is not between common limits (e.g. [150, 3500] m/s), a zero value is

returned.

1.1.2 High resolution method

With the aim of improving the f-k method, Capon (1969) added weighting factors to each sensor

contribution in the computation of the array output. They are calculated in order to minimize

the energy carried by wavenumbers differing from the considered one. The high resolution

frequency-wavenumber technique is theoretically able to distinguish two waves travelling at

close wavenumbers in a better way than the f-k method.

Principles

If the ambient wavefield is recorded with n sensors located at −→ri , let X(−→ri , ω) being the spectra

calculated for station i

X(−→ri , ω) =

q
∑

m=1

Sm(ω)ej(
−→
km·−→ri ) + η(−→ri , ω) (1.4)

where ω = 2πf is the angular frequency, Sm(ω) is the complex spectrum and
−→
km is the wavenum-

ber vector of the plane wave triggered by source m, and η is the uncorrelated part of the signal

(”the noise of the ambient vibrations”). The array output is

R(
−→
k , ω) =

n∑

i=1

Wi(ω)X(−→ri , ω)e−j
−→
k ·−→ri (1.5)

where Wi(ω) are arbitrary weighting functions. The f-k method presented in section 1.1.1 uses

constant weighting functions equal to 1. In this case, equations 1.3 and 1.5 are equivalent.

Estimates of the wave velocity at frequency ω (
−→
k (ω)) are hence obtained by maximizing

the complex modulus of R(
−→
k , ω) in the wavenumber plane. At the maximum,

−→
k equals to

−→
km,

the wavenumber of the dominant plane wave. Using matrix notations,

R = AWX (1.6)

where,

A =
[

e−j
−→
k ·−→r1 , . . . , e−j

−→
k ·−→rn

]

W =









W1(ω) 0 . . . 0

0 . . .

. . . 0

0 . . . 0 Wn(ω)









(1.7)

X = [X1(ω), . . . , Xn(ω)]
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The frequency-wavenumber cross-spectrum is hence

P = AWCW HAH (1.8)

where C = E[XXH ] is the cross spectral matrix evaluated using frequency or spatial smoothing,

and H denotes hermitian conjugate operator.

Capon (1969) introduced particular weighting functions optimized by minimizing the signal

power of WCW H for all wavenumbers differing from the considered
−→
k , which leads to

W =
C−1A

AHC−1A
(1.9)

Theoretically, this high-resolution method allows higher resolution. This assertion is checked

for a simulated and a real case in chapter 6.

Implementation

No particular code has been developed for the high resolution method during this thesis. We

used the software cap(Ohrnberger 2001, Kind 2002, Ohrnberger et al. 2004a, Ohrnberger

2004b). cap can access a GEOPSY database to obtain the input signals. It was available

within the SESAME European project (Site EffectS assessment using AMbient Excitation,

Project EVG1-CT-2000-00026).

1.1.3 Spatial auto-correlation method

The spatial auto-correlation techniques take advantage of the random distribution of sources in

time and space to link auto-correlation ratios to phase velocities. In the case of a single-valued

phase velocity per frequency band, Aki (1957) demonstrated that these ratios have the shape

of Bessel functions of order 0, the argument of which is dependent upon the dispersion curve

values and the array aperture. Bettig et al. (2001) brought some slight modifications to the

original formula to extend the method for irregular arrays. Those concepts are briefly recall

in the next section. An original inversion strategy has been developed for auto-correlation

ratios during this thesis (section 3.3). Examples for synthetic and real cases are discussed in

sections 5.2, 6.1.5, and 6.2.5.

Principles

The spatial auto-correlation function between two sensors is defined by (Aki 1957)

φ(ξ) =
1

T

∫ T

0

v0(t)vξ(t)dt (1.10)

where v0 and vξ are the signals recorded during T seconds at two stations separated by a distance

ξ. If the signals are filtered with a narrow frequency band around ω0, the auto-correlation ratios
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defined by

ρ(ξ, ω0) =
φ(ξ, ω0)

φ(0, ω0)
(1.11)

are calculated for all pairs of receivers. For a given inter-distance ξ, Aki (1957) demon-

strated that the azimuthal average of ρ(ξ, ω0) has the shape of Bessel functions (same as

equation (3.47)).

ρ(ξ, ω0) = J0

(
ω0ξ

c(ω0)

)

(1.12)

where J0 is the Bessel function of the first order and c(ω0) is the dispersion curve. Equation

(1.11) is computed in the time domain on filtered signals (a taper in the frequency domain is

used to ensure a zero phase filter). Another expression is also available in the frequency domain

which avoids one computation of the Fourier transform, but its results are not as precise as

equation (1.11) (Metaxian 1994).

Like for the f-k method, the raw signals are cut in smaller time windows (section 1.1.1) on

which the auto-correlation ratios are computed. Consequently, for each frequency band, for

each range of inter-distance, and for each individual time windows, an azimuthally averaged

auto-correlation ratio is calculated. The results are generally presented under the form of auto-

correlation curves with error bars plotted against frequency or inter-distance (e.g. figure 6.14).

Implementation

The computation of auto-correlation ratio from recorded signals has been implemented as a

plug-in module in GEOPSY. The FFTW algorithm is used for all Fourier transforms.

1.2 Artificial sources

The case of one single and instantaneous point source is considered here. The sensors and the

source points are usually distributed along a line. Contrary to ambient vibrations, there is

a total control over the source parameters (location, type of source, frequency content, time

of occurrence, . . . ). On the recorded signals, the body waves (P and/or S) and the surface

waves are generally visible. The last ones appear at the end of the signal with high amplitudes

and a triangular dispersion pattern. During the last 20 years, surface wave properties have

been intensively exploited by various authors. The first applications consist of inverting the

measured dispersion curve as the fundamental Rayleigh mode including eventual on or more

clearly identified higher modes (McMechan and Yedlin 1981, Gabriels et al. 1987, Stokoe et al.

1989, Herrmann 1994, Malagnini et al. 1995, Foti 2000, Socco and Strobbia 2004). Inversions

of the measured curve taking into account the mode contributions or inversions of the full

waveforms were recently proposed (Yoshizawa and Kennett 2002, Forbriger 2003b).

Here, we are only considering the inversion of the theoretical dispersion curve to adopt an

approach consistent with the ambient vibration method for which no other type of inversion is

currently feasible. The body and the surface wave are hence analysed separately.
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1.2.1 P − SV refracted waves

Classical refraction (Mota 1954) is achieved with sources placed at the two ends and at the

middle of the line. Sources are located at sensor positions in order to control the time reference.

The first P-wave arrival times are picked on the signals. If the ground structure is made of

inclined homogeneous layers with increasing velocity with depth, the traveltime-distance plot

allows the geometry and the seismic velocity of the layers to be retrieved (Mota 1954). With a

limited set of data (24 values maximum) and considering the experimental uncertainties which

can be high in noisy conditions, the solution is rarely unique and several Vp profiles may fit the

data in a similar way.
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Figure 1.3: Reference model for refraction synthetic traveltime-distance plot. (a) Traveltime-distance plot
for three sources. (b) Interfaces of the reference model and the ray paths with the minimum traveltimes. (c)
Velocity profile at horizontal distance 0.

With the aim of extracting the different solutions explaining the experimental traveltimes

in an objective way we developed a simple method based on the neighbourhood algorithm

(Sambridge 1999a, chapter 2). The method, the principles of which are identical to the inversion

of dispersion curves (Wathelet et al. 2004), generates two random one-dimensional Vp profiles

with a fixed number of layers, which define a model with inclined layers. The Vp value within

each layer is randomly chosen inside an interval defined from a prior knowledge of the geological
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Figure 1.4: Inversion of synthetic traveltime-distance plot. (a) Traveltime-distance plot for three sources
calculated for the generated models. (b) Interfaces of the generated models. (c) Generated velocity profiles at
horizontal distance 0.

structure. For each generated model, the ray paths are analytically calculated using the Snell-

Descarte refraction law for inclined interfaces and the traveltimes are computed for all source-

receiver distances. The experimental time-distance values are compared to the calculated ones

using the following misfit function:

misfit =

√
√
√
√

1

n

n∑

i=0

(
texp − tcalc

terr

)2

(1.13)

where, texp is the experimental arrival time corrected by the initial time delay, tcalc is the

calculated arrival time for the current model, terr is the phase picking error or equal to texp if

no error estimation is available, and n is the number of receivers. The experimental error, which

depends upon the sharpness of the P-wave arrival and the signal to noise ratio, is manually

estimated. This method was tested with success on synthetic models with constant velocity

layers and dipping interfaces, using two shots made in opposite directions. This technique is
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used for our real test case in section 6.2.1 on page 6.2.1.

The method is illustrated for a reference model with three layers (figure 1.3(b)). The

constant velocity inside each layer is represented in figure 1.3(c) by the Vp profile measured on

the left side of the model (distance=0). The thin black lines in figure 1.3(b) are the ray paths

with the minimum traveltimes corresponding to the plot of figure 1.3(a). Figure 1.3(a) is the

traveltime-distance plot obtained with three sources placed at the two extremities and in the

middle of the section. Two inversion processes are launched generating 30,000 models among

which 18,000 have a misfit lower than 0.02. The lowest misfit found is 0.00063. The generated

models are shown in figure 1.4(b) and 1.4(c). The corresponding traveltime-distance plots are

visible in figure 1.4(a). Considering 0.02 as an acceptable misfit, the depth of the first interface

is correctly retrieved but the depth of the second one is poorly constrained by the refraction

experiment, unless a very high precision can be achieved while picking the arrival phase of the

distant receivers. From figure 1.4(c), the velocity is correctly inverted down to 16 m. Below

16 m, if all models with a misfit lower than 0.02 are equally acceptable, any velocity between

1000 and 4000 m/s is equally valid to explain the experiment results.

1.2.2 SH refracted waves

The practical requirements and data processing for SH waves are very similar to the P − SV

case. Shear waves polarized in the transversal direction are generated by beating on both sides

of a loaded wood timber oriented perpendicular to the recording line (Jongmans 1992). Both

sides are used to remove the P-wave contribution by the means of negative stacking. The

signals are recorded on horizontal sensors the main axis of which is oriented perpendicular to

the receiver line. The processing of the traveltime-distance curves is exactly the same as for

P − SV refraction.

1.2.3 Surface wave inversion

The sensors along the line are considered in the same way as for ambient vibration arrays.

However, linear arrays have particular theoretical responses that prevent from using exactly

the same algorithms. An example is calculated for 24 receivers placed every 2 m in figure1.5.

The vertical aliasing lines are visible at every multiple of π (= kmax). Hence, kmax/2 corre-

sponds to λ=4 m=2λsampling (one-dimensional sampling theorem) where λ is the wave length.

The maxima of the semblance are searched only in the known direction of propagation (supple-

mentary parameter). Also, the signals are always transient which means that sliding windows

cannot be calculated to evaluate the uncertainties. A single time window of fixed duration is

thus taken for all frequencies. This unique time window is processed in the same way as in

section 1.1.1 on page 1.1.1. No histogram is constructed (section 1.1.1 on page 6) but the sem-

blance is plotted with a colour grid in the frequency-velocity plane. The maxima of semblance

delineate the dispersion curve with eventually higher modes as sketched in figure 1.6 for an

explosive load shot at 20 m of a line of 24 receivers. The details of this experiment are given
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in section 6.2.1, on page 128.
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Figure 1.6: Example of a f-k analysis for surface
waves triggered by an explosive shot.

Implementation

Like the general f-k algorithm, this linear f-k has been implemented as a plug-in module in

GEOPSY. The results were compared with the slantstack method available in the surface wave

package distributed by Herrmann (1994).

1.3 Conclusions

In this chapter, we presented several methods to extract the dispersion (or the auto-correlation)

curves from ambient vibration wavefields and from triggered waves. In the next chapters, we de-

velop an inversion technique to infer sub-surface properties from the dispersion curve. In chap-

ter 6, the signal processing methods briefly introduced in this chapter (f-k, high-resolution,

auto-correlation, refraction tests and surface wave inversion of active experiments) are illus-

trated by synthetic and real field experiments.



Chapter 2

The inversion algorithm

After the estimation of the dispersion or the auto-correlation curves, an inversion tool is devel-

oped to infer the ground structure, especially the seismic velocities Vp and Vs. Chapters 2 and

3 are dedicated to the inversion principles and to the forward algorithm, respectively.

This chapter recalls the basic concepts involved in the inversion theory. Several inversion

methods of common use in geophysics are briefly reviewed. The principles of the neighbour-

hood algorithm (Sambridge 1999a) are detailed because it has been chosen as the core of our

dispersion curve inversion tool. Finally, an improvement to the standard neighbourhood algo-

rithm is proposed when the external limits of the parameter space are not fixed (conditional

neighbourhood algorithm).

2.1 Definition

Model

✔ Unknowns

✔ Physical properties

forward problem

inverse problem

Observables

✔ Data

✔ Measurements

Figure 2.1: Definition of an inversion problem

Physical properties are usually measured through a scientific experiment. For instance,

Torricelli invented the mercury barometer to measure the atmospheric pressure Patm. Patm is

estimated by comparing the height of the mercury column (hmerc) with a graduated scale. If

Patm is known, hmerc can be calculated with a simple linear relationship involving the density

of mercury.

hmerc =
Patm

13.5
(2.1)

This is the forward problem. However, during the scientific experiment, the observable is

19



20 CHAPTER 2. THE INVERSION ALGORITHM

not the pressure but the height of mercury. Hence equation (2.1) must be inverted to calculate

the model parameter Patm from the observable quantity hmerc. The inverse problem is

solved with the following equation

Patm = 13.5 hmerc (2.2)

This is an example of the inversion of a linear problem which is pretty simple and always

solved analytically. In this case, the number of unknowns is one as well as the number of

observable (or data). Scientific models are generally completely described by the means of

more than one parameter. With these models, it is also possible to calculate various theoretical

characteristics. For instance, a characteristic of the model may be a curve which is numerically

represented by a vector of nobs components. Hence the forward problem is a function that

transforms a parameter space of dimension nparam (number of involved parameters) into the

observable space of dimension nobs.

If the function is linear, the linear algebra is used to solved the inversion problem. In this

case, there is no absolute limit for the number of observables and the number of parameters.

If nobs is less than nparam, there is an infinite number of solutions for the parameter vector. On

the contrary, if nobs is greater than nparam, a least-square method is generally used to find the

best set of parameters.

However, in most situations, the relationship is not linear and even more, the forward

problem cannot be solved analytically. Even if the forward problem has an analytical expression,

there are very few special cases where the inversion problem is also analytical. Hence, in most

cases, an inversion method is necessary to calculate the set of parameters corresponding to the

observables. The number of solutions of the inverse problem is generally a complex issue. For

instance, if the forward function is simply y = x2 between two one-dimensional spaces, the

inverse problem may have zero, one or two solutions. The non-uniqueness is hence specific to

each problem and has to be studied on a case-by-case basis.

All scientific observables are measured with a certain degree of error, even if it is not

explicitly quantified. In Torricelli’s experiment, the height of mercury can be measured for

instance down to a 0.5 mm precision. In this one-dimensional linear example, the error on

Patm is easily deduced. For multi-dimensional linear problems the error propagation is also

possible. But for non linear and multi-dimensional problems, calculating the errors on the

model parameters from the errors on the acquired measurements is not straightforward.

2.2 Available methods

All forward problems can be summarized by

O = [O1, . . . , Onobs
]T = f([p1, . . . , pnparam

]T ) (2.3)
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where Oi are the observable values1 and pi are the model parameters2. Generally, a new function

L ∈ < is constructed 3 which vanishes when f is equal to O. The inverse problem is equivalent

to find the set of p1, . . . , pnparam
that verifies

L([O1, . . . , Onobs
]T − f([p1, . . . , pnparam

]T ) = 0 (2.4)

Practically, the minimum of L is searched across the parameter space in different ways

briefly explained in the following sections.

2.2.1 Gridding method

If the number of parameters is small, less than four4, it is conceivable to calculate L for each

combination of parameters. Theoretically, this method offers the best exploration of the pa-

rameter space compared to all other techniques. However, considering the number of forward

problems to solve, this method is very limited. For example, if the prior range of each param-

eter is discretized with 50 samples, if the time to calculate one forward problem is one second,

and if the dimension of the parameter space is five, the total time required for the inversion is

10 years.

2.2.2 Iterative methods

Starting from a first estimation of the model parameters or from whatever appropriate model,

the iterative method converges to the minimum of L by modifying the current model according

to the local properties of function L. In the case of Newton-Raphson, damped least-square or

gradient methods, the partial derivatives or the Jacobian matrix at the current model orientates

the descent towards the solution (Nolet 1981, Tarantola 1987, Herrmann 1994,. . . ). Calculating

the partial derivatives allows a linearization of the problem and linear algebra is used to calculate

a new estimate of the solution. The process is repeated through several iterations until finding

an acceptable minimum. Downhill simplex (Press et al. 1992) is an other iterative method that

requires only function evaluations, not derivative. It is based on geometrical principles.

These kinds of methods are the exact opposite of the gridding method. The exploration of

the parameter space is limited to the path followed during the successive iterations. They are

mostly used for high dimensional parameter spaces for their ability to quickly converge to the

solution. The number of function computations is very small compared to all other methods.

If there are more that one minimum or if the function L has a complex shape with multiple

secondary minima, those methods are likely to converge to one of them which is probably not

the unique and the absolute minimum. The final solution highly depends upon the starting

model. The non-uniqueness, a common phenomenon in inverse problems (Sambridge 2001), can

1Also called data curve, measurements, or target curve.
2Also called unknowns or, simply, parameters.
3This function is called the misfit, the cost, the error or the residual function. It is a real number
4According to the time needed for one computation.
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be apprehended only by a manual selection of ”good” starting models. These methods are then

inadequate when the nonlinearity becomes severe, and can produce optimistic resolution esti-

mates, usually calculated around a single best data-fit model (Sambridge 2001). Shapiro (1996)

showed, that the solutions obtained from classical surface wave inversion schemes (damped

least-square) are too restrictive and uncertainties are not correctly estimated.

From the starting model, the iterative process may lead the current model to whatever part

of the parameter space, being in this case <n 5. It depends upon the unknown shape of function

L. Indeed, L is known for only a discrete number of points where the forward problem has been

solved. In this framework, it is impossible to guarantee that the current model stays within a

defined zone of the parameter space for all iterations. The limits of this zone are adjusted so

that it encloses all potential solutions, given the prior knowledge we have about the model.

2.2.3 Neural Networks

Michaels and Smith (1997) suggested to use neural networks to invert surface waves, inferring

the sub-surface properties. Artificial neural networks are computer programs that simulate the

biological neural networks. Calderón-Maćıas et al. (2000) also used them to inverse electrical

data. From input stimuli (= observables values), it provides an output set of values (= model

parameters). As a human brain, it needs education to react correctly in each situations. Hence,

the neural network used for surface wave inversion is trained with series of the synthetic signals

for which the model is perfectly known. To summarize, the network is a generic mean of

mapping observable to model parameters.

A correct behaviour is obtained only if the network has been trained with synthetic models

close to the true model. Hence, this method cannot be used to scan all potential models that

correspond to experimental data. Moreover, the error propagation cannot be included in an

easy way and the non-uniqueness is never handled.

2.2.4 Monte Carlo methods

These methods are based on a uniform pseudo-random sampling of the parameter space. If

their principle is not new, they gain success amongst the geophysicists during the last 20 years,

due to the increasing power of modern computers. The question addressed by such methods

is not only finding the model with the best data fit but also to retrieve information about the

resolution power of a particular application. This area of statistical inference is reviewed for

example by Edwards (1992), Mosegaard and Tarantola (1995), Sambridge (1999b). The role

of prior information is investigated by all these authors but especially by Scales and Tenorio

(2001). The parameter space does not generally extend to <n like in the case of iterative

methods but it is restricted to a volume defined by the parameter prior ranges. All generated

models are always confined in this volume.

When the dimensionality of the parameter space increases, the basic random generation

5The number of dimension of the ensemble is n = nparam
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of models becomes totally inefficient. This is why several refined approaches were developed

during the last two decades, for instance the simulated annealing (Rothman 1985, Sen and Stoffa

1991) and the genetic algorithms (Stoffa and Sen 1991, Lomax and Snieder 1995, Boschetti et al.

1996, Yamanaka and Ishida 1996). There are also many variants of these methods, combining

them with neural networks or with gradient methods (e.g. Chunduru et al. 1996, Devilee 1999,

Boschetti and Moresi 2001). The objective of these techniques is to seek a model with a globally

optimal data misfit value. These methods and their variants usually need empirical tuning of

several parameters that control the inversion process, ensuring computational efficiency and

robustness against entrapment in local minima.

Recently, Sambridge (1999a) proposed an entirely different method based on the partition

of the parameter space into Voronoi cells6( neighbourhood algorithm). It has only two tuning

parameters and it is claimed as self-adaptive in searching a parameter space. The objective,

which is different from the previously mentioned methods, is to sample (in an optimal situation)

all the regions of the parameter space where models with acceptable data fit are found. This last

technique has been chosen for our dispersion curve inversion tool. Its principles are examined

with more details in the next section.

2.3 The neighbourhood algorithm

The Voronoi decomposition of the parameter space is the base of an approximation of the misfit

function L which is progressively refined during the inversion process. The approximation is

set as constant inside each cell and the misfit value calculated at the central point is affected

to the whole cell. A two-dimensional parameter space is given as an example in figure 2.2(a).

The black dots are some model points for which a misfit is calculated.

The neighbourhood algorithm needs four tuning parameters:

itmax is the number of iteration to perform;

ns0 is the number of models chosen at random inside the parameter space at the beginning of

the inversion;

ns is the number of models to generate at each iteration;

nr is the number of best cells (with the lowest misfit) where the ns models are generated.

The inversion process is composed of the following phases:

1. a set of ns0 models is randomly generated with a uniform probability in the parameter

space;

2. the misfit function is calculated for the most recently generated models;

3. the nr models with the lowest misfit of all models generated so far are selected;

6It is a unique decomposition of the space into n cells around n points pi. The cell around point pi is defined
by the ensemble of points that are closer to pi than to whatever other point pj where j 6= i.
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4. generate an average of ns

nr
new samples with a uniform probability in each selected cell;

5. add the ns new samples to the previous ensemble of models and go back to (2).
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(a) (b)

Figure 2.2: Voronoi cells for a two-dimensional parameter space (from Sambridge (1999a)).

Figure 2.2(a) is an example of a two-dimensional parameter showing the models (black dots)

and the limits of the Voronoi cells. ns0 (=9, in this case) models are generated and the grey cell

has the lowest misfit. In this example, seven new models are generated in one cell (nr = 1, and

ns = 7). Figure 2.2(b) depicts the Voronoi geometry after the first iteration. The size of the

original cell decreases as the sampling rate increases. If the cell with the grey outline has the

lowest misfit, the density of sampling will not decrease systematically after each iteration. This

is an interesting property of the Voronoi geometry that allows the centre of sampling to jump

from place to place, whilst always sampling the most promising nr regions simultaneously.

In the neighbourhood algorithm, a random walk (Gibbs sampler) is performed with a uni-

form probability density function inside the cell and zero outside. A walk is a sequence of

perturbations to a model along all axis. The modified model is statistically independent of the

original model. Asymptotically, the samples produced by this walk will be uniformly distributed

inside the cell regardless of its shape. To confine the random walk inside a particular cell it

is mandatory to calculate the multi-dimensional limits of the cell. Calculating the complete

Voronoi geometry for high dimensional spaces becomes practically impossible when the number

of models increases. Sambridge (1999a) proposed an original algorithm to compute only the

limits along lines which are parallel to axis, in a precise and efficient way. These lines support

the successive segments of the random walks.

There are only a few number of control parameters: ns0, ns, nr, and itmax which is the

maximum number of iterations. The neighbourhood algorithm is more exploratory if the ns

new samples are distributed on many cells and it optimizes more if they are restricted to the

very few best cells. Typical values for the tuning parameters are 100 for ns0, ns, nr. To force a

better optimization, nr may be set to 5, 10 or 50. Tests show that generally better misfits are

obtained with fewer iterations if nr is low, but the inversion is more trapped in local minima.

The exploratory mode (e.g. nr=100 and ns=100) usually provides better final misfits if the
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inversion is conducted with a great number of iterations. The number of iterations ranges from

50 to 200. This makes a total of 5,000 to 20,000 generated models. Compared to linearized

methods the number of forward computations is much greater. Consequently, the forward

computation has to be correct for each parameter set without a visual check and it must be

highly optimized to reduce the total computation time. These aspects are analysed in chapter 3

when designing the dispersion curve algorithm.

The neighbourhood algorithm like all other Monte Carlo techniques relies on a quasi or

pseudo-random generator. A basic random generator on a computer is a series of numbers with

a uniform probability, which is initialized by a special number called the random seed. The

seed may take any integer value. Two inversion processes started with distinct seeds generate

different models. However, if the problem is sufficiently constrained, the algorithm converges

towards the same zone of the parameter space. For less constrained parameters, the investigated

zones may be quite different. An interest of launching several inversion processes for the same

case is to test the robustness of the fine result. All sets of models generated by separated

processes can be merged to construct a more refined approximation of the misfit function.

The ensemble of models obtained from the neighbourhood algorithm has not the same

statistical properties as the posterior probability density. Moreover, the statistical properties

of the resulting ensemble strongly depend upon the tuning parameters. If lots of iterations

are performed, the number of models near the best model is greater than for an inversion

with less iterations. By the means of a resampling of the parameter space and approximating

the posterior probability density with the misfit function, Sambridge (1999b) calculated the

Bayesian integrals on an ensemble of models having the statistical properties corresponding to

the posterior probability density. In our work, the algorithm we tested did not work properly,

probably due to internal bugs. By the lack of time, we did not investigate more this approach

but this second stage of the inversion is certainly valuable to measure the resolution and trade-

off in a quantitative way.

2.4 Conditional parameter spaces

In its original form, the neighbourhood algorithm handles a parameter space with orthogonal

boundaries. All parameters have a uniform probability within prior fixed limits. They are set

at the beginning of the process with constant values. If the limit of one parameter depends

upon the value of another parameter, it is necessary to implement a variable transformation.

For instance if parameter p1 belongs to [l1, u1] where l1 and u1 are constant numbers, and

p2 < αp1, the prior interval of parameter p2 is [l2, u2] (if u2 < αp1) or [l2, αp1] (if u2 > αp1), l2

being less than αl1. The variable transformation is p2 = l2 + p′2 (αp1 − l2) where p′2 is a random

parameter between 0 and 1 that replaces p2 in the neighbourhood model. The random variable

p2 is the product of two random variables with uniform probabilities. The probability of p2

cannot be calculated analytically in an easy way, but it is certainly not uniform anymore. In

chapter 4, for complex ground structures there are numerous conditions of this type, and the
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(a) (b) (c)

Figure 2.3: Comparison of the distributions generated by variable transformation and by selection. 1000
models are generated. (a) Random distribution of two parameters with no condition. (b) The condition p1 < p2

is applied with a variable transformation. (c) The condition is p1 < p2 is applied by rejecting bad model, but
conserving the total number of models.

variable transformation is not an efficient and flexible method. Figure 2.3(b) gives an example

of the effects of the variable transformation on the model distribution across the parameter

space (α = 1). Compared to a uniform distribution (figure 2.3(a)), the region at low p1 is

over-sampled relative to other parts of the space.

The original Fortran code and the steps described in Sambridge (1999a) make a clear dis-

tinction between the generation of the random models and the computation of the misfit by

a user supplied function. Hence, at the user level, it is not possible to indicate to the neigh-

bourhood algorithm that a particular model is not valid. Modifications of the original code to

implement such a feature cannot be done in an easy, elegant and compact way. Moreover, it is

written in Fortran77 with static vectors. Consequently, the maximum number of models to be

generated is hard coded. All these reasons led us to re-write the algorithm in C++.

A list of parameters and their prior ranges, as well as a list of conditions of the type pi < αpj

define the conditional parameter space. The initial ranges are eventually adjusted according to

the list of conditions. For instance, if the input ranges are p1 ∈ [50, 200] and p2 ∈ [100, 250],

and if p2 < p1, the intervals are modified as p1 ∈ [100, 200] and p2 ∈ [100, 200]. These

conditions are called the low level conditions. The above condition is a forward condition

for parameter p2. Its counterpart, p1 > p2, is a backward condition for parameter p1. Other

more complex conditions, eventually involving more than two parameters7 are called the high

level conditions. The first type of conditions are checked inside the neighbourhood algorithm

itself, whereas the last ones are checked by the user supplied function that calculates the misfit.

Contrary to the original Fortran implementation, the misfit function returns also a boolean

value that is false if the misfit cannot be calculated (limits of the forward algorithm, physical

or prior conditions not met when the final model is constructed).

1. A set of ns0 models is randomly generated with a uniform probability in the parameter

7For example, in the case of a one-dimensional ground structure (see chapter 4), the Vp profile may be fixed
from the results of a refraction survey. The thicknesses of the Vs layers may be set independently, eventually
with a more refined discretization. The conditions induced by the natural limits of Poisson’s ratio have to take
the depth parameters into account, besides usual Vp and Vs.
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space and with the fulfilment of all conditions..

(a) random generation of parameter pi between li and ui;

(b) check of low level forward conditions attached to parameter pi, if okay, increment i;

(c) while all parameters are not generated go back to step (a);

(d) As a set of parameter satisfying the low level conditions has been generated, check

the high level conditions and calculate the misfit;

(e) if the model is not accepted by the high level conditions, restart from the first

parameter in step (a);

(f) the model is accepted and it is added at the end of the main model vector, a vector of

the references to the nr best models, sorted by increasing misfits is kept up-to-date;

(g) while ns0 models are not generated, restart from the first parameter in step (a) to

generate a new model;

2. Save the current nr best models

3. Generate an average of ns

nr
new samples with a uniform probability in each selected cell

(nr cells).

(a) generate one model with a Markov chain equivalent to one described by Sambridge

(1999a), except that the ”triangular” external shape (induced by the low level con-

ditions) of the parameter space is a supplementary limit of the Voronoi cells;

(b) if the high level conditions are satisfied, calculate the misfit and store the model in

the same way as in step (1)(f);

(c) while ns new models are not generated, generate a new model in step (a);

4. While itmax iterations are not completed, go back to (2).
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Figure 2.4: High level condition inter-

section with Voronoi cells for a 2D param-

eter space. The valid models are on the

right of the parameter space limit marked

by the thick black curve. The black dots

are the models so far generated.

If no conditions are set, this particular implementa-

tion of the neighbourhood algorithm gives the same re-

sults as the standard code and with approximately the

same computation time. Contrary to the standard code

implemented in the main dispersion curve inversion tool,

this algorithm has not been tested intensively. At least in

one situation, when the theoretical or true model is very

close to a high level condition, the algorithm fails to gen-

erate new models. This is illustrated in figure 2.4 for a 2D

case. When generating a new model in the cell with the

grey outline, there are about one third of chance to get

a good model. For higher dimensions of the parameter

space, the situation is even worse. This issue might be
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solved by introducing more complex low level conditions,

like: “if p1 < p2 and p2 < p3, then check is p4 < αp5”.

Sambridge (2001) proposed a refined definition of the

misfit function to sample all regions of the parameter space

where the models have an acceptable misfit. Particularly, if the misfit found is less than a

threshold, the model is stored with the misfit equal to the threshold. Below this threshold,

the differences in the model response are considered as not significant. On this basis, a refined

algorithm might be developed with the objective of finding the exact boundaries of all the

possible acceptable regions. It may work by trying to find bad fitting models inside the good cells

converging to a refined definition of the boundaries region containing the solutions. Recognizing

contiguous cells with acceptable misfit cannot be done in a perfect way for high dimensional

parameter spaces. But even with an approached computation, it might be sufficient to identify

the various modes of the current misfit function. The search may be oriented towards models

located between those poles, for instance by creating a new temporary and smaller parameter

space focused on the badly sampled region.

This improvement of the standard neighbourhood algorithm is still under testing at the

time of writing this thesis. Consequently, no example can be given to illustrate it.

2.5 Conclusions

The neighbourhood algorithm is a flexible and powerful inversion method which requires reliable

and fast forward calculation codes. Its ability to explore all the possible solutions is a strong

advantage over linearized methods for complex and sometimes poorly constrained geophysical

problems.



Chapter 3

Forward computation

This chapter aims at designing proper algorithms to calculate the dispersion, ellipticity, and

auto-correlation curves in the framework of a pseudo-random inversion. A direct search algo-

rithm, such as the neighbourhood algorithm described in section 2.3, generates a great number

of models for which the forward calculations are needed to obtain a misfit value. The misfit

value summarizes the degree of appropriateness of a generated model to explain the observed

data. Because of the amount of computations, the forward algorithm must be fast and secure.

Hence, much attention has been paid to the optimizations and to the quality of the final results.

Also, the sensitivity of the three curves to the model properties are studied in detail.

3.1 Dispersion Curves

This section describes the computation of the theoretical dispersion curve of a ground struc-

ture. This curve is calculated for models the properties of which vary with depth only (one-

dimensional structure). The profiles are discretized along the depth axis by a stack of layers with

uniform properties as sketched by Fig. 3.1. The model parameters are the compressional-wave

velocity (Vp), the shear-wave velocity (Vs), and the density (ρ) in the layers.

Though implementations of the dispersion curve for Love and Rayleigh waves already exist

for years (e.g. in Fortran, Herrmann 1994), the basic algorithms are studied in detail and

optimized to reduce the CPU time consumption. The proposed algorithm is written in C++

and operates only on dynamic memory vectors without any disk access. This considerably

decreases the total required time. The specificities of Love and Rayleigh waves are investigated

separately from the points of view of the theory and the implementation.

The computation of theoretical dispersion curves is based on the eigenvalue problem de-

scribed by Thomson (1950) and Haskell (1953), subsequently modified by Knopoff (1964),

Dunkin (1965) and Herrmann (1994). We use the Dunkin’s notations, here after and inside

the source code. The Herrmann’s code uses almost the same method as Dunkin. For Love

and Rayleigh waves, the equation of motion can be reduced to a system of simple differential

equations with a derivative of the first order in z. In the case of a stack of horizontal layers,

this problem can be solved by the propagator-matrix method (Gilbert and Backus 1966, Aki

29
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zn−1
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zn
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Figure 3.1: Schematic one-dimensional model defined by a stack of (n+1) layers. zi are the depths of the top
of each layer.

and Richards 2002), described in the next section.

3.1.1 Propagator-matrix method

For a stack of horizontal and uniform layers, Gilbert and Backus (1966) proposed a method to

solve the differential equation defined by

df(z)

dz
= A(z)f(z) (3.1)

where f is a vector of n components and A is a n*n matrix. If A is independent of z, which is

valid inside a layer, the solution is given by

f(z) = G(z, z0)f(z0) (3.2)

where,

G(z, z0) = e(z−z0)A(z) (3.3)

Equation (3.3) can be developed to find the elements of matrix G using an eigenvalue decom-

position of matrix A (Aki and Richards 2002). Because of the continuity of the displacement

and the stresses at all interfaces between two layers, the following property is easily deduced

from equation (3.2):

f(z2) = G(z2, z1)f(z1) = G(z2, z1)G(z1, z0)f(z0) (3.4)
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Hence, the vector f(z) at depth z, inside layer n is:

f(z) = G(z, zn)G(zn, zn−1) . . .G(z1, z0)f(z0) (3.5)

The propagator matrices G are functions of the depth at the top and at the bottom of each

layer, and of the matrix A which depends upon layer properties. For Love and Rayleigh, vector

f(z) is called the motion-stress vector defined in sections 3.1.3 and 3.1.4, respectively.

3.1.2 Displacements, Stresses, and strains

This section recalls the relationships between the displacement vector, the strain matrix and

the stress matrix in the framework of the linear theory of elasticity. If the displacements along

axis xi are infinitesimal (ui where i may be 1, 2 or 3), the strain matrix is defined by

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)

(3.6)

The stress matrix is linked to the strain matrix by the means of the Hooke tensor cijkl (81

components reducing to 21 due to symmetries). Using the summation rule for replicated indices

inside a product, the stress tensor can be written as

σij = cijklεkl =

3∑

k=1

3∑

l=1

cijklεkl (3.7)

In the case of isotropic medium, the 21 independent components reduce to the two Lamé

moduli, λ and µ, and equation (3.7) is now

σij = λδij(δklεkl) + µ(δikδjl + δilδjk)εkl (3.8)

where δij is the Kronecker symbol (δij = 1 if i = j or 0 if i 6= j).

In the absence of volumetric forces, the equation of motion is a differential equation of

displacements and stresses.

ρ
d2ui

dt2
=

3∑

j=1

∂σji

∂xj

(3.9)

where ρ is the density. For clarity, in the next sections, numerical indices i are replaced by

indices x, y, and z, and xi are replaced by x, y, and z.

3.1.3 Eigenvalue problem for Love waves

Theory

In a vertically heterogeneous, isotropic and elastic medium occupying a half-space, equation

(3.9) for Love waves has a solution of the form:
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ux = 0

uy = l(k, z, ω)ei(kx−ωt) (3.10)

uz = 0

ux, uy and uz are the radial, transversal and vertical components, respectively. VL = ω
k

(m/s)

is the Love velocity at angular frequency ω (rad/s), k is the wavenumber in the x direction.

l(k, z, ω) is the real amplitude, phase shifts are ignored as only one component is considered.

The associated non-null stresses are (from equations (3.6) and (3.8)):

σxy = ikµ(z)lei(kx−ωt) (3.11)

σyz = µ(z)
dl

dz
ei(kx−ωt)

µ(z) = ρ(z)Vs(z)2 is the shear rigidity. Let call
(
µ(z) dl

dz

)
by lσ. A motion-stress vector for Love

waves ([l, lσ]T ) is defined so that equation of motion (3.9) can be transformed into

d

dz

(

l

lσ

)

=

(

0 1/µ(z)

k2µ(z) − ω2ρ(z) 0

)(

l

lσ

)

(3.12)

which has the form of equation (3.1). For surface waves, the boundary conditions require that:

l → 0 when z → ∞ (3.13)

lσ = 0 at the free surface z = z0 (3.14)

Because equation (3.12) has the same form as equation (3.1), the solution for the motion-stress

vector is given by equation (3.5). The condition on the motion-stress at infinity (equation (3.13))

cannot be introduced directly. It is transformed into a radiation condition that no up-going

waves are found in the bottom half-space. For SH plane waves, the amplitudes of downgoing

(S̀n) and up going (Śn) waves traveling across an homogeneous half space are function of the

motion-stress vector at the top of the half space (z = zn) (Aki and Richards 2002)

(

S̀n

Śn

)

= T−1
n

(

l(zn)

lσ(zn)

)

(3.15)

where,

T−1
n =

1

2νnρn

(

νnρneνnz −eνnz/V 2
sn

νnρne−νnz e−νnz/V 2
sn

)

(3.16)

ν2
n = k2 − ω2

V 2
sn

(3.17)
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Vsn is the velocity of S waves (m/s). The subscript n denotes parameters defined for layer n as

represented in figure 3.1. The motion-stress vector is propagated to z0 by the means of equation

(3.5). Equation (3.15) becomes

(

S̀n

Śn

)

= T−1
n G(zn, zn−1) . . . G(z1, z0)

(

l(z0)

lσ(z0)

)

(3.18)

where,

G(zn, zn−1) =

(

cosh[νn−1(zn − zn−1)] 1/(νn−1µn−1)sinh[νn−1(zn − zn−1)]

νn−1µn−1sinh[νn−1(zn − zn−1)] cosh[νn−1(zn − zn−1)]

)

(3.19)

Introducing the boundary conditions (equations (3.13) and (3.14)) into equation (3.18) gives

(

S̀n

0

)

= T−1
n Gn . . . G1

(

l(z0)

0

)

=

(

l11 l12

l21 l22

)

︸ ︷︷ ︸

L(z0)

(

l(z0)

0

)

(3.20)

which has only non trivial solutions when l21 vanishes. The problem of finding the dispersion

curves for Love waves is hence reduced to a root search along the slowness or the velocity axis

for a given frequency. For a given frequency ( ω
2π

), only a few discrete values are possible for

the velocity of the Love surface wave (VL =
[

ω
k(ω)

]

i
), corresponding to the dispersion curves of

various modes.

Eigenfunctions

The functions l and lσ defined in equations (3.10) and (3.11) are the eigenfunctions of Love

waves. For each depth and frequency, different values of eigenfunctions exist corresponding to

all roots of l21(z0) (modes). The motion-stress vector at depth z0 can be defined numerically

by normalizing l(z0) to any arbitrary value. The computation of the eigenfunctions at the next

layer interface is done by multiplying the motion-stress vector at depth z0 by G−1
1 . The same

task is repeated until reaching the top of the half-space. Inside a particular layer, the values

of the eigenfunctions are also calculated from the definition of G−1
n (equation (3.18). Examples

of eigenfunction variation with depth can be found in Aki and Richards (2002). Among other

features, they show that the penetration depth is frequency dependent. For high frequencies,

only the most superficial layers are affected by displacements and stresses.

Implementation

The problem is to find the solutions of the equation l21(VL) = 0. The computation of the

element l21(z0) requires the multiplication of n 2x2 matrices, whereas three of the four elements
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of the final matrix L(z0) are useless. From the formulae of the product of two 2x2 matrices,

only l21(z1) and l22(z1) are necessary for computing l21(z0) which, in turn, requires l21(z2) and

l22(z2) (equation 3.21).

(

− −
l21(z0) −

)

︸ ︷︷ ︸

L(z0)

= T−1
n Gn . . . G1 (3.21)

=

(

− −
l21(zn) l22(zn)

)

︸ ︷︷ ︸

L(zn)=T−1
n

Gn . . . G1

. . .

=

(

− −
l21(z2) l22(z2)

)

︸ ︷︷ ︸

L(z2)

G2G1

=

(

− −
l21(z1) l22(z1)

)

︸ ︷︷ ︸

L(z1)

G1

To calculate L(zn) = T−1
n , the factors e−νnz are dropped from elements l21(zn) and l22(zn)

(equation (3.16) because we are looking for the roots of l21(VL).

From equation (3.17), νn is imaginary if k is less than the wavenumber of S-waves ksn = ω2

V 2
sn

.

To avoid using complex number libraries, the sinh and cosh functions of equation (3.19) are

replaced by the corresponding trigonometric functions sin and cos. For real values of νn, the

hyperbolic functions do not tolerate high arguments. They are preferably computed from their

analytical formulae:

sinh(ix) =
eix − e−ix

2
= ex 1 − e−2x

2
(3.22)

cosh(ix) =
eix + e−ix

2
= ex 1 + e−2x

2

Hence, an exponential factor can be dropped from the expression of G in equation (3.19) because

we are seeking for roots. When factor ex is dropped, the computation of both hyperbolic

functions require the calculation of only one exponential function. As we are working in double

precision (floating points of 64 bits), all exponential values e−2x less than 10−19 are equivalent

to zeros in equations (3.22). Thus, in equation 3.19, the hyperbolic functions reduce to 1
2

if

νn−1(zn − zn−1) >
19

2
∗ ln(10) ≈ 21.2 (3.23)

In each layer, values of l21(zi) are scaled to fit in the range between −105 to 105, to avoid

overflow when propagating across a stack with many layers.

In figure 3.2, the values taken by l21(z0) for all couples (ω, k) are shown in the case of a

two-layer model: 200 m/s for Vs in the first 25 m thick layer, and 1000 m/s in the half-space.
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The first 12 modes located at the root of the function are highlighted by black lines. The

negative values of the function are not represented (white areas). The normal modes of Love

are observed between the minimum and the maximum Vs of the model. The fundamental mode

is present over the whole frequency range, whereas each higher mode has its own threshold

frequency under which it does not exist.
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Figure 3.2: Values taken by l21(z0) at different couples (frequency, velocity) for a two-layer model.

Finding the roots of l21(z0) is not straightforward. This issue is treated in section 3.1.5

together with the overall performances of this algorithm.

3.1.4 Eigenvalue problem for Rayleigh waves

Theory

In a vertically heterogeneous, isotropic and elastic medium occupying a half-space, a P − SV

wave travelling along X axis generates displacements along X and Z axis of the form

ux = r1(k, z, ω)ei(kx−ωt)

uy = 0 (3.24)

uz = r2(k, z, ω)ei(kx−ωt)
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where ux, uy and uz are the radial, transversal and vertical components, respectively, r1 and

r2 are the complex amplitudes (including phase shifts between components), ω is the angular

frequency, and VR = ω
k

is the velocity of Rayleigh waves (m/s). A motion-stress vector for

Rayleigh waves is defined in a similar way as for Love case (section 3.1.3).

r(k, z, ω) =









r1(k, z, ω)

r2(k, z, ω)

rσ
1 (k, z, ω)

rσ
2 (k, z, ω)









(3.25)

where,

rσ
1 = i

(

(λ + 2µ)
dr2

dz
+ kλr1

)

(3.26)

rσ
2 = µ

(
dr1

dz
− kr2

)

rσ
1 is the amplitude of the vertical compression stress σzz and rσ

2 is the amplitude of the ra-

dial shear stress σxz. From equation of motion (3.9), the solution must satisfy the following

differential equation:

d

dz









r1

r2

rσ
1

rσ
2









=









0 −ik 0 1
µ

−iλ
λ+2µ

0 1
λ+2µ

0

0 −ω2ρ 0 −ik
4k2µ(λ+µ)

λ+2µ
0 −ikλ

λ+µ
0

















r1

r2

rσ
1

rσ
2









(3.27)

where ρ is the density, λ and µ are Lamé moduli. The z dependencies of ρ, λ and µ have been

dropped for simplicity. For surface waves, the boundary conditions require that:

r1 → 0 and r2 → 0 when z → ∞ (3.28)

rσ
1 = rσ

2 = 0 at the free surface z = z0 (3.29)

Similarly to Love case, the equation of motion is reduced to an equation of the same form

as equation (3.1). The solution for the motion-stress vector is given by equation (3.5). The

constraint on the motion-stress at infinity is transformed into a radiation condition that no

up-going waves are found in the bottom half-space. For P − SV plane waves, the amplitudes

of downgoing (P̀n and S̀n for P and S-waves, respectively) and up going (Ṕn and Śn for P and

S-waves, respectively) waves traveling across an homogeneous half space are function of the

motion-stress vector at the top of the half space (z = zn) (Dunkin 1965, Aki and Richards

2002). The motion-stress vector is propagated to z0 by the means of equation (3.5). The
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subscript n is added to all parameters defined for layer n.









Ṕn

Śn

P̀n

S̀n









= T−1
n









r1(zn)

r2(zn)

rσ
1 (zn)

rσ
2 (zn)









= T−1
n G(zn, zn−1) . . . G(z1, z0)r(z0) (3.30)

where,

T−1
n =

−V 2
sn

2µnĥnk̂nω2









2iµnkĥnk̂n µnlnk̂n ĥnk̂n ikk̂n

−µnlnk̂n 2iµnkĥnk̂n ikĥn −ĥnk̂n

2iµnkĥnk̂n −µnlnk̂n ĥnk̂n −ikk̂n

µnlnk̂n 2iµnkĥnk̂n −ikĥn −ĥnk̂n









(3.31)

where, ĥ2
n = 2k2 − ω2

V 2
pn

, Vpn is the velocity of P waves (m/s), k̂2
n = 2k2 − ω2

V 2
sn

, Vsn is the velocity

of S waves (m/s), ln = k2 + k̂2
n, µn = ρnV 2

sn is the rigidity, and ρn is the density (t/m3).

Merging boundary conditions with equation (3.30),









0

0

P̀n

S̀n









= T−1
n Gn . . . G1r(z0)

=









r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44









︸ ︷︷ ︸

R(z0)









r1(zn)

r2(zn)

0

0









(3.32)

This equation is always true when the sub-determinant (r11r22 − r12r21) vanishes. Like in the

Love case, the problem of finding the dispersion curves is thus reduced to a root search along

the slowness or the velocity axis for a given frequency. However as stated by Dunkin (1965), the

terms of the sub-determinant can become very large. Subtracting two large numbers results in

a loss of significant digits, which implies the use of very high precision computations (e.g. 128

bit numbers or even more whereas computers are classically limited to 32 or 64 bits). Hence,

Dunkin proposed an alternative way of propagating motion-stress vector by the means of the

following theorem. If P = A(0)A(1) . . . A(n−1)A(n) then

p

∣
∣
∣
∣
∣

i j

k l

∣
∣
∣
∣
∣
= a(0)

∣
∣
∣
∣
∣

i j

m n

∣
∣
∣
∣
∣
a(1)

∣
∣
∣
∣
∣

m n

o p

∣
∣
∣
∣
∣
. . . a(n−1)

∣
∣
∣
∣
∣

s t

u v

∣
∣
∣
∣
∣
a(n)

∣
∣
∣
∣
∣

u v

k l

∣
∣
∣
∣
∣

(3.33)

where p

∣
∣
∣
∣
∣

i j

k l

∣
∣
∣
∣
∣
= pikpjl −pilpjk is the second order sub-determinant of matrix P. The notation

Pijkl is also used in appendix A.
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In equation (3.33), the summation rules1 apply for indices appearing two times like m and

n. In this case, the summed pairs of indices are to be only distinct pairs of distinct indices2

(by convention, m < n, o < p,. . . , s < t, u < v). It follows from equation (3.33) that:

r11(z0)r22(z0) − r12(z0)r21(z0) = r(z0)

∣
∣
∣
∣
∣

1 2

1 2

∣
∣
∣
∣
∣

= t−n 1

∣
∣
∣
∣
∣

1 2

a b

∣
∣
∣
∣
∣
gn

∣
∣
∣
∣
∣

a b

c d

∣
∣
∣
∣
∣
. . . g1

∣
∣
∣
∣
∣

e f

1 2

∣
∣
∣
∣
∣
= 0 (3.34)

With the condition on indices, the factor t−n 1

∣
∣
∣
∣
∣

1 2

a b

∣
∣
∣
∣
∣
has 6 components: 12, 13, 14, 23, 24 and

34 (Dunkin 1965). On the other hand, gn

∣
∣
∣
∣
∣

a b

c d

∣
∣
∣
∣
∣
has 6x6 components. Hence, like in the Love

case, for a given frequency ( ω
2π

), only a few discrete values are possible for the velocity of the

Rayleigh surface wave (VR =
[

ω
k(ω)

]

i
), corresponding to the dispersion curves of various modes.

The dispersion curve is found by seeking the roots of r(z0)

∣
∣
∣
∣
∣

1 2

1 2

∣
∣
∣
∣
∣
.

Eigenfunctions

As for the Love case, the functions r1 to rσ
2 defined in equation (3.25) are the eigenfunctions

for Rayleigh waves. From equation (3.32), it is obvious that

r1(z0)

r2(z0)
= −r12(z0)

r11(z0)
(3.35)

The ratio of eigenfunctions r1 and r2 is hence fixed to a constant that depends upon the

values of the elements of matrix R(z0), itself, a function of the mode and the frequency for

which the Rayleigh velocity has been calculated. The motion-stress vector at depth z0 can

be defined numerically, normalizing either r1 or r2 to any arbitrary value. The computation

of the eigenfunctions at any arbitrary depth is done in the same way as for the Love case.

The elements of G are not given here, but it can calculated by an eigenvalue decomposition of

matrix A (equations (3.27) and (3.1)).

The eigenfunctions at the surface are useful for computing the ellipticity of Rayleigh waves

(section 3.2). It will be shown how to calculate r12(z0)
r11(z0)

without the complete knowledge of the

elements of matrix R(z0).

Implementation

The detailed expressions of the determinants of R(zi) are given in appendix A. The six-

component vector R(zn−2) is obtained by combining the matrix Gn−1 and the vector R(zn−1)

1The summation of indices take place when one or more indices appear two times inside a product. For
instance, the formula xkiyil is in fact equal to

∑max

i=min xkiyil
2In the pair (m, n) m is always different from n, and pairs (m, n) and (n, m) are strictly equivalent
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in the same way as equations (A.12) for Gn and T−1
n . The computation is done for each layer

for bottom to top up to the first one at the free surface. As T1214 and T1223 (appendix A) are

equal (from equation (3.31)), it is obvious that R1223(zn−1) = R1214(zn−1). From bottom to

top, the two components are always equal (equation (3.30)) and we can reduce the number of

components to five rather than six. Also, R1214(zn−1) like T1214 is the only imaginary component

and this feature is preserved across the layered medium. Thus, the 6 components of t−1
n reduce

to 5 and the matrix gn to 5x5 components.

To speed up the computation, we slightly modified the Dunkin’s original formulation to

reduce the total number of operations, preferring subtractions, additions and multiplications

to divisions. The sinh and cosh functions are calculated in the same way as for Love case,

including the real and imaginary cases (equation (3.22), section 3.1.3). A frequency factor of

ω2 (equation (A.12), appendix A) has been introduced in R1212 to avoid unscaled vector at low

frequencies. For each layer, values of sub-determinants are scaled to fit in the range between

−105 to 105 to avoid overflow when propagating across a stack with many layers. Compared

to Herrmann’s formulation (1994) in the same conditions (not in its original Fortran code but

already translated in C++), this implementation reduces by 25% the time consumption.
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Figure 3.3: Values taken by R1212(z0) at different couples (frequency, velocity) for a two-layer model.

In figure 3.3, the values taken by R1212(z0) for all couples (ω, k) are shown in the case of

a two-layer model: 1350 and 250 m/s for Vp and Vs, respectively in the first 25 m thick layer,
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and 2000 and 1000 m/s in the half-space.

3.1.5 A quick root search

For a given ω, the roots of either l21(z0) (Love) or R1212(z0) (Rayleigh) are searched along the

velocity axis. The problem is not to find some roots of the function but all roots in a correct

order to clearly identify the modal curves. Inside the source code, the search is performed on

the slowness axis to reduce the number of time consuming divisions and also to take advantage

of the better separation of modes at high frequency in the slowness domain compared to the

usual velocity domain (figure 3.3). For the sake of clarity, the velocity is used in this section.

Physical search interval

Typical dispersion curves are shown on figure 3.4 with their lower and higher velocity limits.

All real curves have a velocity less than or equal to the maximum S-wave velocity of the

0.5 1 5 10 50
Frequency (Hz)

200

400

600

800

1000

V
el

oc
ity

(m
/s

)

Vs min

Vs max

Vr min

Vr max

0.5 1 5 10 50
Frequency (Hz)

200

400

600

800

1000

V
el

oc
ity

(m
/s

)

Vs min

Vs max

Figure 3.4: Velocity limits of Love (a) and Rayleigh (b) dispersion curves. Fundamental mode and the two
first higher modes are represented with plain, dashed, dotted lines respectively. The horizontal lines are the
physical velocity limits.

model (Vs,max). The minimum possible velocity is not the same for Love and Rayleigh cases.

For Love waves, all modes tend to a common velocity at very high frequencies, equal to the

minimum S-wave velocity of the model (Vs,min). At high frequency, deep layers are ignored by

the surface waves behaviour. For Rayleigh waves, all higher modes tend to Vs,min and Vs,max at

high and low frequencies respectively. For the fundamental mode, the minimum (Vr,min) and

maximum (Vr,max) velocities at high and low frequencies are slightly less than Vs,min and Vs,max,

respectively. Vr,min and Vr,max are equal to the Rayleigh velocity observed for a homogeneous
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half-space with the velocity of the first layer and the bottom half space, respectively. In this

latter case, equations (3.31) and (3.32) simplify to

(
1

V 2
s

− 2
1

V 2
r

)2 = 4
1

Vr

√

(1 − 1

V 2
p

)(1 − 1

V 2
s

) (3.36)

where Vs is the velocity of S-waves, Vp is the velocity of P-waves, and Vr is the unknown velocity

of Rayleigh waves. Equation (3.36) shows that the velocity of Rayleigh waves is constant for

all frequencies, and hence no dispersion takes place. Vr,max for Rayleigh dispersion curves

(fundamental mode) is thus calculated by solving equation (3.36) with Vs and Vp being the

slownesses of the layer with the minimum Vs. A few Newton-Raphson (Press et al. 1992)

iterations are necessary to obtain Vr,min and Vr,max.

Bracketing the root candidates

The roots are searched starting from the highest to the lowest frequency within the range

defined by the user. The method is illustrated in figure 3.5. The grey curves correspond to

the same dispersion curves as in figure 3.3. In this section, the Rayleigh case is discussed, but

the same method applies to Love’s case as well, by replacing Vr,min by Vs,min, and R1212(z0) by

l21(z0). f1 is the highest frequency of the user range and f2 is the second highest frequency.

The fundamental and the first two higher modes are represented. The plus and minus signs

represent the polarity of function R1212(z0). The polarity below the fundamental curve (initial

polarity) is computed for Vr,max

1.05
and at low frequency ( 1

2π
Hz). The minimum limit is divided

by 1.05 to be sure that the fundamental mode is not missed. The polarity alternates when

crossing a modal curve.

The first root with the minimum velocity, that corresponds to the fundamental mode at

the highest frequency (f1), is bracketed by increasing the velocity from Vr,max

1.05
with an adaptive

step until finding a sign change. It always exists as the fundamental mode is present for all

frequencies (grey dots and black dots when a root is found). The search step is calculated by

multiplying the lower limit of the current interval by a constant step ratio. Either for Love

and Rayleigh, half the difference between Vs,min and Vr,min is taken as a reference to adjust the

initial velocity step. Hence, the step ratio is defined by

Vs,min − Vr,min

2 Vs,min
(3.37)

This method is particularly justified in this case because the ratio of the minimum and maximum

velocities of the admissible range is usually around 4 or 5. The step ratio is eventually reduced

and the precision is increased, if mode jumping is detected (section 3.1.6). Once a root has

been bracketed, its upper and lower bounds are refined down to the current precision using the

algorithm described in the next paragraph. The higher bound of the refined interval is kept as

the calculated curve. The modal velocity is then computed for the next frequency sample f2.

The starting velocity for the new search is the velocity calculated for the preceding frequency
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Figure 3.5: Method for bracketing roots.

sample, f1 in this case (the higher bound is taken). The search direction depends upon the

polarity observed at f2 and at the starting velocity. If it is the same as the initial polarity, the

true dispersion is located at a higher velocity (as in figure 3.5) and the root is refined after the

same type of search as in f1. In the other case, the dispersion has a non-monotonous shape,

characteristic of models with low velocity zones (section 3.1.6). No search is made because a

polarity change has already been found; the root is directly refined. The same process is applied

for all frequency samples until the lowest. A final test described in section 3.1.6 is performed

on the obtained modal curve. Afterwards, the curve is definitively accepted.

For higher modes, the minimum of velocity ranges are reduced to the values of the refined

higher bounds of the preceding mode. The initial polarity is inverted. The modal curve may

not be defined for all frequency samples. If so, the velocity search stops at Vs,max. If the polarity

at Vs,max is the same as the initial polarity, no root exists and the computation of this mode is

stopped. The same test as for the fundamental mode is performed before definitively accepting

the curve.

Refining the brackets

Once bracketed, there are several classical ways of refining a root of a non-linear or non-

analytical function. Among them, the most robust is the bissection (Press et al. 1992). It always

gives the correct answer if the root is correctly bracketed and if the function is continuous.

However, it is not the quickest way in most of the situations. Like Herrmann (1994), we

implemented an algorithm that mixes the bissection method and a Lagrange polynomial fit.

The Lagrange polynomial is best constructed using the iterative Neville’s algorithm (Press et al.
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1992). Corrections have been brought to Herrmann’s algorithm to achieve better performances.
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Figure 3.6: Method for refining roots. (a) to (f) are successive steps of refinement. The thick plain curve is
the unknown theoretical curve. The thin plain line is the polynomial fit from already calculated samples (black
dots). The grey dot is the new root computed from polynomial fit. The grey rectangles show the zoom area of
the next step.

Practically, from the two initial bracketing values (V1 and V2), a third point V3 is calculated

by bissection. R1 to R3 are the values of R1212(z0) for V1 to V3, respectively. According to the

sign of R3, either V1 or V2 is replaced by the value V3, swapping them eventually afterwards to

keep V1 < V2. It is the state described by figure 3.6(a), where V1 and V2 are represented by

black dots. A Lagrange polynomial is constructed on those two samples (a line in this case),

shown by the thin plain line. From the intersection of the polynomial with axis y = 0, a new V3

is deduced, it is shifted by a tenth of V2−V1 towards the limit with the highest R1212 value, and

R3 is re-calculated. If R3 is located between R1 and R2, the function is bijective inside [V1, V2]

and hence invertible between V1 and V2. This is not the case in figure 3.6(b). Consequently, the

algorithm returns to bissection to generate a new sample V3 from the current V1 and V2. As in

the first step, either V1 or V2 is replaced by the value V3 (new brackets are shown in figure 3.6(c)

by black dots). New samples (grey dots) are generated from the polynomial fit and integrated

into it. In figures 3.6(d) to 3.6(f), the degree increases at each step as new samples are added.

To efficiently calculate the root of a Lagrange polynomial P (V ), the axis X and Y are

swapped during its construction. The coordinates of the samples are swapped so that P ′(R)

fits (R1, V1), (R2, V2), . . . . The current estimate for the root is V = P ′(0). If R1 and R2 differ

from a factor 10 or more, the Neville’s algorithm may fail and it is better to return to the

bissection until reducing the ratio. To avoid a quick return to bissection, the newly generated

point has to be on the side of the true root where either R1 or R2 is maximum. For doing so,
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the calculated value is considered as the true root, and it is shifted by a tenth of the current

bracket interval towards the boundary having the highest value for the function. In most cases,

when the true function is locally weakly non-linear, the limit with the highest function value

is replaced by the new shifted estimate of the root at the next iteration, keeping the order

of magnitude of R1 and R2 in the same range. This is the minor modification we brought to

Herrmann’s algorithm (1994), but it has a major influence over the global performances, as

the full power of the polynomial fit is used. The maximum degree of the polynomial is set

to 19, because its coefficients are stored in a static vector of limited length for efficiency. In

a contradictory way, finding the perfect root 3 is a problem because the inferior and superior

brackets are lost as no sign can indicate on which side of the true root a new sample is. It

may ruin the root search for the next modes. This case is checked, and the computation of

the function is redone at a slightly distinct value (minus one tenth of the current bracketed

interval).

With this method, only 4 to 6 iterations are generally necessary to obtain a 10−7 relative

precision. One iteration corresponds to one evaluation of the numerical function R1212(z0). In

the original code written by Herrmann (1994), the degree of the polynomial never increases over

2 or 3, quickly returning to bissection. More than 10 iterations are necessary to achieve the

same precision. Our code rarely returns to bissection, increasing the degree of the polynomial

at each iteration. Together with the removal of all file Input/Output, it has been possible to

drop the time consumption by a factor 5 to 6.

3.1.6 Mode jumping control

During a direct search inversion, the number of calculated dispersion curves is so huge that it

is impossible to manually control the individual results of each model. That is the reason why

an automatic quality control has been developed.

Figure 3.2 shows that modal curves might be located very close to each other at certain

frequencies: at high frequency for Love case, or at osculation points for Rayleigh case (e.g.

Forbriger 2003a). At these points, the distance between two modes might be smaller than the

default step calculated above. During the search, crossing two modes in one step results in a

constant polarity and hence modes are sought at a higher velocity, ignoring two modes. Another

kind of mode jumping may occur for models with low velocity zones (LVZ). For those models

only, the dispersion curve may have a non-monotonous shape with a least one maximum (figure

3.7. When moving from frequency f1 to f2 in figure 3.5, the horizontal line may cross several

modes only if higher modes have also a non-monotonous shape at the considered frequency.

Two kinds of tests (detailed in the next two paragraphs) are performed during the com-

putations of dispersion curve to detect any mode jumping. In case of error, the computation

is always restarted for the current modal curve to the highest frequency of the user range.

Meanwhile, the search step and the relative precision are both divided by a factor 10. At

3In the computer sense, the perfect root is obtained when the values of the function are less then the internal
precision.
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this stage, optimization is not of concern and the step is chosen small enough to avoid mode

jumping rather than decreasing slowly until finding the maximum needed size. Four restarts

are allowed before stating that the dispersion cannot be calculated for the given model. The

default precision and step ratio are reset after each acceptance of a modal curve.

Non-monotonous shape

If no LVZ is detected in the model, any extrema of the dispersion curve is rejected and com-

putation is restarted. On the other hand, if a LVZ takes place in the model (figure 3.7),
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Figure 3.7: Dispersion curve of a model with a LVZ.

the dispersion curve may show one or more ex-

trema. The validity of the preceding sample is

checked by searching a hypothetical additional

mode at a lower velocity (in the reverse direction

of the initial search with the same step). If any

additional mode is found, it proves that mode

jumping occurred and computation is restarted.

For those models with LVZ, the computation

of dispersion curves may fail for all step sizes,

even if the number of admitted restarts were in-

finite. Hence, some LVZs are tolerated in this

implementation but not all of them. For some

of them, the correct determination of the modal

curve may require a denser frequency sampling

(user input). In this latter case, a more refined technique should try to calculate the root at

an intermediate frequency.

End-point check

For the fundamental mode, the velocity has to be lower than Vs,max, even for Love waves. When

it is equal, it generally results from a mode jumping taking place at a higher frequency. For the

higher modes, the Vs,max value is obtained when reaching the frequency threshold below which

the mode does not exist. For all modes, the last point (at the lowest frequency) is checked by

searching a hypothetical additional mode at a lower velocity (in the reverse direction of the

initial search with the same step). If any root is encountered between the higher bound of the

preceding mode and the lower bound of the last sample of the current mode, it means that

at least one mode is missing. Unlike Herrmann’s code, the root search and root refinement

are always preserving the upper and lower limits of the roots. In this way, there is absolutely

no risk to confuse the search result with the previously calculated modes. This check assumes

that the distance between modes is changing along the frequency axis. When there are two

osculation points with one located at the lowest frequency of the user range, this algorithm

may however fail to detect any mode jumping. For the Rayleigh fundamental mode, there is

absolutely not risk of such phenomena, if the user frequency range extends to a sufficiently low
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frequency, for instance, below the threshold frequency of the first higher mode.

3.1.7 Misfit

The misfit is a value that represents the distance between a calculated dispersion curve and an

experimental curve. If the data curve is affected by an uncertainty estimate, the misfit is given

by:

misfit =

√
√
√
√

nF∑

i=1

(xdi − xci)2

σ2
i nF

(3.38)

where xdi is the velocity of data curve at frequency fi, xci is the velocity of calculated curve

at frequency fi, σi is the uncertainty of the frequency samples considered, nF is the number of

frequency samples considered. If no uncertainty is provided, σi is replaced by xdi in equation

(3.38).

When various modes are observed and clearly identified, the inversion of all modes requires

a multi-modal misfit. The sum in equation (3.38) is extended to all samples available for

all modes. For higher modes, the curves may be defined over a restricted frequency range.

Hence, it is not always possible to calculate a theoretical dispersion curve for some experimental

samples. If the calculated one-dimensional model is close to the real one, the valid ranges of

higher modes are similar and the number of experimental samples is equal to the number of

calculated samples. To force both curves to be defined in the same frequency range, the misfit

is multiplied by a factor equal to

misfit = misfit ∗ (1 + nexperimental − ncalculated) (3.39)

nexperimental being the number of available samples for each curve (nexperimental ≥ ncalculated).

3.1.8 Sensitivity of the dispersion against layer parameters

Four parameters characterize each layer: the thickness, Vp, Vs and the density (ρ). Vs is the

most influent parameter (e.g. Xia et al. 2003). It varies from 0 in fluids to 3500 m/s in

earth superficial crust (Reynolds 1997). Vp does not influence Love-dispersion curves and has

sometimes a non-negligible influence on Rayleigh-dispersion curve (see below). The natural

values are between 100 to 7000 m/s (Reynolds 1997). Vs and Vp are linked by Poisson’s ratio

defined by

ν =
2V 2

s − V 2
p

2(V 2
s − V 2

p )
(3.40)

Poisson’s ratio is always between 0 and 0.5 (vanishing Vs). Common geologic materials have a

Poisson’s ratio around 0.25. It may be greater for unconsolidated or loose sediments, reaching

0.49 in soft clays. 0.05 can be measured for Very hard rocks (Reynolds 1997). The density (ρ)

has almost no effect on the dispersion within the usual geologic values from 1 to 3 t/m3.
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The effects of these parameters on the dispersion curve are detailed in the next sections for

a two-layer, a three-layer and n-layer case. The naming convention is the same as in figure 3.1.

Two-layer model

Figures 3.8 and 3.9 show the influence of Vs0 in the case of a fixed Vp profile and of a constant

Poisson’s ratio, respectively. Love and Rayleigh dispersion curves (Vr(f)) are plotted with

plain and dotted lines, respectively. The models and their corresponding dispersion curves are

represented by distinct grey levels. In figure 3.8, only Vs0 is changing from 100 to 1900 m/s.

Poisson’s ratio varies as well because Vp0 is held constant (written on the right). In figure 3.9,

only the variations of Vs0 are represented but Vp0 is also changing for all models to keep a con-

stant Poisson’s ratio being 0, 0.25 and 0.45 in figure (a) to (c), respectively. Love and Rayleigh

curves are monotonously decreasing with at least one inflexion point. The first derivative of

Love curves has always one minimum. For Rayleigh curves, two minima and a maximum may

exist in the first derivative, especially for moderate to high Poisson’s ratios. Vs of the first layer

changes the limit of the curves at high frequency. The limit at low frequency is not influenced by

the properties of the superficial layer. The lower is Poisson’s ratio and the higher is Vs0, bigger

is the difference between Love and Rayleigh dispersion curves at high frequency, in accordance

with equation (3.36) for a half-space.
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Figure 3.8: Influence of Vs0 with a constant Vp profile. Rayleigh and Love fundamental modes are represented
by plain and dotted lines, respectively. The values on the right are the Poisson’s ratios corresponding to Rayleigh
curves. Vs0 varies from 100 to 1900 m/s. Vp0 is 2687 m/s. Vs1 is 2000 m/s. Poisson’s ratio is 0.25 below 50 m.
The density is 2 t/m3 at all depths.

In the Rayleigh case, the influence of Vp0 is checked in figure 3.10 for two distinct Vs0 values

(200 and 1000 m/s). In both cases, Poisson’s ratio varies from 0 (dark grey) to 0.45 (light

grey). Vp profiles are shown in the small figure on the left. For case (a), it varies between 280

and 660 m/s, and between 1400 and 3300 m/s for case (b). Vp has apparently an impact on the

dispersion curve when Poisson’s ratio is less than a threshold (around 0.27 for case (a) and 0.37
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Figure 3.9: Influence of
Vs0 with a constant Pois-
son’s ratio: (a) ν=0, (b)
ν=0.25, and (c) ν=0.45.
Rayleigh and Love funda-
mental modes are repre-
sented by plain and dotted
lines, respectively. Vs0 varies
from 100 to 1900 m/s. Vs1 is
2000 m/s. Poisson’s ratio is
0.25 below 50 m. The den-
sity is 2 t/m3 at all depths.
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Figure 3.10: Influence of Vp0 on the Rayleigh dispersion curve for two cases: (a) Vs0=200 m/s, and (b)
Vs0=1000 m/s. Poisson’s ratio varies from 0 (dark) to 0.45 (light). Hence, Vp0 varies from 283 to 663 m/s (case
(a)), and from 1414 to 3316 m/s (case (b)). Vs1 is 2000 m/s. Poisson’s ratio is 0.25 below 50 m. The density is
2 t/m3 at all depths.
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Figure 3.11: Influence of z1. Rayleigh and Love fundamental modes are represented by plain and dotted lines,

respectively. Vs0 is 200 m/s. Vs1 is 2000 m/s. Poisson’s ratio is 0.25 at all depths. The density is 2 t/m3 at all
depths.
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for case (b)) which depends upon Vs0. Above this threshold, Vp looses its influence. For case

(a), only three curves are well individualized, those corresponding to Vp less than 400 m/s. This

conditional dependency explains that, in most cases, only a minimum of Vp can be retrieved

from the inversion of dispersion curves (section 4.2).
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Figure 3.12: Influence of z1 for Vs profile. Rayleigh and Love fundamental modes are represented by plain
and dotted lines, respectively. Vs0 is 200 m/s. Vs1 is 2000 m/s. Poisson’s ratio is (a) 0.00 and (b) 0.25 above
50 m and below 75 m. The density is 2 t/m3 at all depths. The results for a Poisson’s ratio of 0.45 are quite
similar to those of 0.25 (not shown).

In figure 3.11, the influence of the thickness of the first layer is tested. Vs and Vp profiles

are both modified by this parameter. Love and Rayleigh dispersion curves are translated in

the same way when the depth is reduced. As Vp or Poisson’s ratio only changes the shape of

Rayleigh curves, it is likely that the effects of the thickness are mainly due to the modification

of Vs profile rather than Vp profile. This is tested hereafter with figures 3.12 and 3.13.

In figure 3.12, Vp profile is held constant where z1 of Vs profile varies from 50 to 75 m. The

same translation as in the general case is observed. For low Poisson’s ratios, the velocity at

1.25 Hz is not affected by the changing depth. The third of the wavelength, a common rule of

the thumb in surface wave analysis to map frequency scales to depth scales (Tokimatsu 1995),

is about 95 m at 1.25 Hz.

In figure 3.13, Vs profile is held constant. Rayleigh dispersion curve is nearly not influ-

enced except for low Poisson’s ratio. For some other cases with higher Poisson’s ratios (not

shown here), the only affected part of the dispersion is the curvature close to the maximum

Rayleigh velocity. Uncoupling depth limits of Vs and Vp is one of the perspectives offered by

the conditional neighbourhood algorithm (section 2.4).

The density of the first layer has a low influence on the dispersion curves (either Love or

Rayleigh) as shown by figure 3.14. The density is changed from 1 to 3 t/m3 with Vs0 being

200 and 1000 m/s, case (a) and (b), respectively. The effects clearly depend upon Vs0. Vs1 is

the same for both cases, hence the velocity contrast is also modified between (a) and (b). The
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Figure 3.13: Influence of z1 for Vp profile. Rayleigh and Love fundamental modes are represented by plain
and dotted lines, respectively. Vs0 is 200 m/s. Vs1 is 2000 m/s. Poisson’s ratio is (a) 0.00 and (b) 0.25 above
25 m and below 50 m. The density is 2 t/m3 at all depths. The results for a Poisson’s ratio of 0.45 are quite
similar to those of 0.25 (not shown).

effect of the density is only visible for case (b). In case (a), the density has almost no influence

except around 1 Hz. Only the shape is modified, not the low and high frequency limits. The

considered interval (from 1 to 3 t/m3) is probably larger than usual prior uncertainty on density.

Hence, this parameter is generally fixed to a constant value during inversions of dispersion curve

(section 4.2).

The same sensitivity analysis is carried out for the parameters of the bottom half-space.

The influence of Vs1 is estimated in figure 3.15. Vp profile is held constant. Vs1 and Poisson’s

ratio in the bottom half space vary from 300 to 2000 m/s, and from 0.5 to 0, respectively. It

acts exactly like Vs0 replacing high by low frequencies and vice-versa. The difference between

Love and Rayleigh curves at low frequency increases like Vs1, and it is maximum for Poisson’s

ratio equal to 0. Above 2 Hz, no effect can be observed. Poisson’s ratio has a little effect on

the shape of the dispersion between the low and high frequency limits. The magnitude of the

effect is much smaller than the effect of superficial Poisson’s ratio.

To corroborate this observation, the effect of Vp1 alone is measured in figure 3.16. Vs1 is

fixed to a constant value equal to 500 m/s and 2000 m/s, for cases (a) and (b), respectively.

In a similar way as for Vp0, all curves appear to be merged together for all Vp1 greater than a

particular threshold (around 4000 m/s for case (b)).

Finally, the influence of the density is shown in figure 3.17. Two cases are chosen with Vs1

fixed to 500 and 2000 m/s, noted by (a) and (b), respectively. The density varies from 1 to

3 t/m3. Comparing figures 3.14 and 3.17, the densities of the first layer and of the half-space do

not affect the dispersion in the same way. The last one reduces the apparent velocity when the

density decreases. Like the density of the superficial layer, the interval of variation is probably

larger than the prior uncertainties. Hence, the effects of ρ are generally negligible.
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Figure 3.14: Influence of ρ0 for two cases: (a) Vs0=200 m/s, and (b) Vs0=1000 m/s. Rayleigh and Love

fundamental modes are represented by plain and dotted lines, respectively. ρ0 varies from 1 to 3 t/m3. Vs1 is
2000 m/s. Poisson’s ratio is 0.25 at all depths.
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Figure 3.15: Influence of Vs1 with a constant Vp profile. Rayleigh and Love fundamental modes are represented
by plain and dotted lines, respectively. The values on the left are the Poisson’s ratios corresponding to Rayleigh
curves. Vs1 varies from 300 to 2000 m/s. Vs0 is 200 m/s. Poisson’s ratio is 0.25 above 50 m. The density is
2 t/m3 at all depths.
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Figure 3.16: Influence of Vp1 on the Rayleigh dispersion curve for two cases: (a) Vs1=500 m/s, and (b)
Vs1=2000 m/s. Poisson’s ratio varies from 0 (dark) to 0.45 (light). Vs0 is 200 m/s. Poisson’s ratio is 0.25 above
50 m. The density is 2 t/m3 at all depths.
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Figure 3.17: Influence of ρ1 for two cases: (a) Vs1=500 m/s, and (b) Vs1=2000 m/s. Rayleigh and Love

fundamental modes are represented by plain and dotted lines, respectively. ρ1 varies from 1 to 3 t/m3. Vs0 is
200 m/s. Poisson’s ratio is 0.25 at all depths.
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Three-layer model

With this geometry, the properties of the first and the last layer (half-space) have the same

effect as for the two-layer case. The influence of the intermediate layer characteristics (Vs1,

Vp1, and ρ1) is investigated here. First, a large variation range is tested for Vs1, between 100

to 2500 m/s (figure 3.18). This variation induces several types of models: a low velocity zone

(Vs1 < Vs0 = 200 m/s), a normal increase of the velocity (Vs0 < Vs1 < Vs2), and a High Velocity

Zone (Vs1 > Vs2 = 2000 m/s). Vs0 is fixed to 500 m/s. Vs2 is set to 2000 m/s. Vp profiles are

calculated with a Poisson’s ratio of 0.25.
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Figure 3.18: Influence of Vs1 with a constant Poisson’s ratio. Rayleigh and Love fundamental modes are rep-
resented by plain and dotted lines, respectively. Vs1 varies from 100 to 2500 m/s. Vs0=500 m/s. Vs2=2000 m/s.
Poisson’s ratio is 0.25 and density is 2 t/m3 at all depths. (b) Two-layer model (Vs profile) and the corresponding
dispersion curve.

1. Low velocity zone

At high frequency, Love and Rayleigh waves have approximately the same velocity, which

is equal to the minimum Vs of the model (Vs1 in this case). Love curves are monotonously

decreasing. On the contrary, Rayleigh curves present a small minimum. At low frequency,

the effects of the low velocity zone disappear.

2. Normal increase of the velocity

The general shape of the dispersion curves is very comparable with the ones for a two-

layer model (figure 3.9(b), dispersion curves for the model with Vs0=500 m/s). The only

difference is the higher velocity between 6 and 30 Hz which follows the velocity increase

of the second layer Vs1.

3. High velocity zone

At high frequency, the Rayleigh curves are similar to the curves that are obtained with

a two-layer model with a contrast at 10 m (figure 3.19). At low frequency, the Rayleigh
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curves tend to Vr,max like the other classes of models. For Love, the algorithm ends

with an error message. Exceptionally for a fundamental mode, the curve does not exist

at all frequencies (available above 10 Hz, or for wavelengths less than 200 m). At low

frequency, the first layer (10 m thick) is not ”seen” by the propagating waves with a

wavelength greater than 200 m. The model is equivalent to a high velocity layer overlying

a half space where no real solution exists for the Love surface waves (Aki and Richards

2002, equation 7.6 calculated with complex numbers).
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Figure 3.19: The light grey model in figure 3.18

is the same as in this figure between 0 and 50 m.

(a) Vs profile. (b) The calculated dispersion for

the two-layer model. The dispersion curves are

also similar at high frequency.

The influence of Vp1 in the intermediate layer is

tested with the same model as in figure 3.10. The

sediment layer is split in two in the same way as in

figure 3.18 (10 and 40 m). Vp1 in the intermediate

layer of 40 m is changed, keeping other parame-

ters constant. The results are shown in figure 3.20

with two cases for Vs between 0 and 50 m: (a)

Vs0 = Vs1=200 m/s, and (b) Vs0 = Vs1=1000 m/s.

Figures 3.20 and 3.10 are quite similar, proving

that intermediate values Vp1 also influence moder-

ately the dispersion curve. At high frequency, in

figure 3.20(b), all curves tend to same Rayleigh ve-

locity. On the contrary, in figure 3.10(b), for low

Vp0 values, a significant influence is observed above

10 Hz. This difference is entirely due to the velocity values between 0 and 10 m, which control

the Rayleigh velocity at very high frequency.
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Figure 3.20: Influence of Vp1 on the Rayleigh dispersion curve for two cases: (a) Vs0 = Vs1=200 m/s, and (b)
Vs0 = Vs1=1000 m/s. Poisson’s ratio varies from 0 (dark) to 0.45 (light). Vs2=2000 m/s. Poisson’s ratio is 0.25
in first and bottom half-space. The density is 2 t/m3 at all depths.
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3.1.9 Conclusion

An efficient and safe algorithm for calculating dispersion curves has been developed. On cur-

rently available personal computers (e.g. with a processor Athlon 2.2 GHz), the time needed to

calculate one sample is about 5 microseconds for a two-layer model. If the dispersion curve of

the fundamental mode is sampled with 30 points, more than 6500 models can be calculated in

only one second. It has been implemented in a command line program (os_forward) and in an

inversion tool (os_na). This algorithm is also exploited to calculate other spectral properties

of the ground model like the ellipticity and the auto-correlation, detailed in the next sections.

3.2 Ellipticity

The H/V Method is a common tool used for site-effect investigations (Nogoshi and Igarashi

1970, Nakamura 1989, Bard 1998). The horizontal (H) and vertical (V) components are simul-

taneously recorded at one single point. The ratio of H over V generally exhibits a peak, that

corresponds more or less to the fundamental frequency of the site (f0 = Vs

4h
, Bonnefoy 2004).

However, the ambient wavefield is composed of unknown parts of body and surface waves. In

the first case, the ratio is mainly influenced by SH resonance in the superficial layers. On

the other hand, if Rayleigh surface waves predominate, the theoretical ellipticity dictates the

observed curves (Nogoshi and Igarashi 1970, Fäh et al. 2001, Fäh et al. 2003, Scherbaum et

al. 2003). Real data peaks usually fit the frequency of the theoretical curves but the ampli-

tude is rarely stable and reliable. Malischewsky and Scherbaum (2004) developed an analytical

formulation for two-layer models. They plotted the differences of the peak frequency between

the two aforementioned assumptions versus the magnitude of the velocity contrast. At inter-

mediate and low contrasts (below a factor of 4 between Vs0 and Vs1), a drastic gap may exist

between the two interpretations. In this case, Bonnefoy (2004) showed that the observed H/V

peak better fits with the extrema of the SH transfer function.

H/V spectrum contains valuable information about the underlying structure, especially a

particular relationship between Vs of the sediments and their thickness (Boore and Toksöz

1969, Scherbaum et al. 2003). Because the absolute amplitude of the curve cannot be directly

compared to the amplitude of the SH transfer function or the ellipticity, only the frequency

of the peak is considered here. Some preliminary tests showed that using ellipticity amplitude

offers a very good constraint even on Vp profile. However, wrong assumptions on the amplitude

also lead to completely biased results. Nevertheless, Fäh et al. (2003) invert the amplitude

between the peak and the trough by means of assumptions about the energy partition between

Love, Rayleigh and body waves. This alternative has been discarded during our work. The

next sections focused on how to calculate the ellipticity of Rayleigh waves and how to calculate

the exact frequencies of the peaks.
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3.2.1 Computation

The ellipticity is defined by the ratio r1(z0)
r2(z0)

where r1(z0) and r2(z0) are the factors appearing

in equation (3.24). This ratio can be calculated from the terms of matrix R(z0) as shown by

equation (3.35). As detailed in section 3.1.4, the matrix R(z) is never completely calculated

during the dispersion curve computation and values of r12(z0) and r11(z0) are not available.

However, it is possible to calculate the ratio r12(z0)
r11(z0)

from sub-determinants r(z0)
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shown here below.

From the computation of the dispersion curve we know that r(z0)
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≈ 0. The ap-

proximation comes from the fact that the dispersion curve is solved numerically with a finite

precision. Here, the problem is assumed to be perfectly solved, and the approximation is

dropped in the following equations. For simplicity, the z0 dependency is also dropped

r11r22 = r12r21

r
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= r11r23 − r13r21 (3.41)
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It is useful to mention that r
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is imaginary as demonstrated by equation (3.35). We

multiplied by i as a real value is internally computed. The solution of the system of equations

(3.41) is

r1(z0)

r2(z0)
=

r12(z0)

r11(z0)
= i
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(3.42)

Thus, for elastic waves in a layered model, this ratio is an imaginary number either positive

(prograde) or negative (retrograde). These terms come from the analogy between a rolling ball

and the particle motion

For a half space, using equation (3.31), the classical formula is obtained (Tokimatsu 1995):

r1(z0)

r2(z0)
= i

k(ln − 2knhn)

hn(ln − 2k2
= −i

2knk

ln
= −2i

√

1 − (Vr/Vs)2

2 − (Vr/Vs)2
(3.43)

It is always a negative imaginary number and r1(z0) and r2(z0) are out of phase by 90◦ with

each other. The particle motion at the surface is then always retrograde elliptical for a half

space. In general, only the real absolute amplitude of the ellipticity is shown on a log-log plot.

Equation (3.42) proves that the ellipticity can be calculated at a very low cost once the

dispersion has been correctly computed. However, the results are stable and reliable only if
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the dispersion problem (equation (3.34)) is sufficiently solved. Taking into account the error,

equation (3.42) transforms into

r1(z0)

r2(z0)
= i

r
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∣
∣
∣
∣
∣

1 2

1 3

∣
∣
∣
∣
∣

(3.44)

where e is the remainder of equation (3.34). Its magnitude is not constant because the itera-

tions of the root search algorithm are stopped when the Rayleigh slowness (or the velocity) is

estimated with a relative precision of 10−7. No test are performed on the absolute value of the

remainder. Calculating the error on the ellipticity value is never done because the total error

depends upon particular terms of matrix R(z0), not fully computed here. In most cases, expe-

rience has proved that the problem is sufficiently solved with a 10−7 relative precision on the

dispersion curve. An exception to this rule is shown in the next section for a three-layer model

where a 10−50 relative precision is necessary. Such computations are possible with numbers

having more than 50 significant digits handled by the ARPREC library (Bailey 2004).

In contrast to section 3.1.7, the misfit computation is presented after the sensitivity study

because a better understanding of the particular shape of the ellipticity curve is necessary to

define the misfit.

3.2.2 Sensitivity

For a two-layer model the influence of Vs0 is shown in figures 3.21 and 3.22, for a constant Vp

profile and a fixed Poisson’s ratio, respectively. Hence, the ellipticity of a two-layer model has

in most cases a root (at 1 Hz for the darkest curve) and a singular point (the maximum at

0.5 Hz for the darkest curve) but it is not always true as demonstrated in figure 3.22. Even

for a two-layer model, a secondary maximum may be encountered (at 0.8 and 2.2 Hz in figure

3.22). There is always one frequency band (narrow or large) where the ellipticity is maximum.

When the number of layers increases, several singularities are sometimes observed but it

is not a constant feature. Figure 3.23 illustrates the variation of the ellipticity with Vs of

the intermediate layer for a three-layer case. At high frequency for the darkest model (with

Vs1 being 100 m/s), usual precision is not sufficient to achieve a correct computation of the

ellipticity curve. An experimental algorithm with high precision arithmetics has been developed

for this particular case. A striking feature of the ellipticity curve of the two darkest models of

figure 3.23, both having a thin hard ground at the surface, is that the ellipticity ratio at high

frequency does not tend to the value predicted by equation (3.43). All other models follow

equation (3.43) at high frequency. Physically, this could be explained by the trapping of energy

within the intermediate layer which alters the classical development of surface waves.

Scherbaum et al. (2003) showed for a two-layer model that an inversion of the frequency of

the main peak can bring valuable information. The generalisation to n layers is not straight-



3.2. ELLIPTICITY 59

0.2 0.4 0.60.81 2 4 6 8 10 20 40
Frequency (Hz)

5e-01

1e+00

5e+00

1e+01

5e+01

1e+02

E
lli

pt
ic

ity
0 2000

0

20

40

60

Vs

Figure 3.21: Influence of Vs0 with a constant Vp profile. Vs0 varies from 100 to 1900 m/s. Vp0 is 2687 m/s
hence, Poisson’s ratio varies from 0.499 (dark) to 0 (light) like in figure 3.8. Vs1 is 2000 m/s. Poisson’s ratio is
0.25 below 50 m. The density is 2 t/m3 at all depths.
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Figure 3.22: Influence of Vs0 with a constant Poisson’s ratio. Vs0 varies from 100 to 1900 m/s. Vs1 is 2000 m/s.

Poisson’s ratio is 0.25 and the density is 2 t/m3 at all depths.
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forward because the shape of the ellipticity curve appears to be very sensitive to the model

parameters. In this context, the determination of the frequency of the main peak is not uni-

vocal in all cases even for the simplest models. Also, the inversion of the absolute amplitude

of the experimental H/V curves with the Rayleigh fundamental ellipticity in the general case

of n layers may not be reliable. If experimental H/V curves may present several peaks, there

is no strong evidence of a relationship between those real peaks and the various peaks of the

fundamental Rayleigh curve. The ellipticity of the higher modes or body wave resonance may

be also suspected. Without a clear agreement on the physical model to explain multiple peaks

of the experimental H/V curves, a conservative option, detailed in the next section, is kept to

avoid the introduction biased prior information.
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Figure 3.23: Influence of Vs1 with a constant Poisson’s ratio. Vs1 varies from 100 to 2500 m/s. Vs0=200 m/s.

Vs2=2000 m/s. Poisson’s ratio is 0.25 and the density is 2 t/m3 at all depths.

3.2.3 Misfit

The misfit of the ellipticity is defined by

misfit =
(f0)experimental − (f0)calculated

(df0)experimental
(3.45)

where f0 is the frequency of the peak, and (df0)experimental is the standard deviation of the

experimental frequency peak. In case of a joint inversion of the dispersion curve and the

frequency peak of the ellipticity, the two misfits are combined with the following relation

(misfit)global = (1 − α)(misfit)dispersion + α(misfit)ellipticity (3.46)

From the implementation point of view, (f0)calculated is not computed easily. For each sample

point of the ellipticity curve, it is necessary to calculate the corresponding sample points of the
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dispersion curve. Hence, for a first estimate of (f0)calculated, only the user frequency samples

are used. Calculating the misfit with this first approach leads to a misfit which highly depends

upon the arbitrary user frequency samples. A more robust algorithm must be able to calculate

the exact frequency of the peak (down to a reasonable precision, 10−3 Hz by default). The peak

sampling is refined with a three-point scheme. Because of the local continuity of the ellipticity

curve, if elli is the maximum of the sampled curve, the true maximum is always located between

elli−1 and elli+1. A new sample is added between elli−1 and elli, or elli and elli+1. The largest

interval is always chosen in order to balance the sampling rate around the true peak. For each

supplementary sample, the dispersion curve is re-calculated. In the new subset made of the

four samples, the absolute maximum is searched and the same processing is performed until

bracketing the true peak with a sufficient precision.

Additionally, when various peaks are present in the user frequency range, the same pro-

cessing must be conducted for each relative maximum. A set of several (f0)calculated,i is thus

obtained. Due to the lack of general agreement on the signification of multiple experimen-

tal H/V peaks, only the main one is kept for inversion. The misfit value is calculated with

(f0)calculated,i which gives the lowest misfit.

3.3 Spatial auto-correlation

The spatial auto-correlation method was first proposed by Aki (1957) for horizontally propagat-

ing waves. The case of pure Rayleigh waves measured on the vertical components is considered

in this work.

3.3.1 Computation

Assuming a unique phase velocity per frequency and the stationarity of the noise wavefield

both in time and space, Aki (1957) demonstrated that the correlation of the signals recorded

at two stations separated by distance r can be written :

ρ(r, ω) = J0

(
ωr

c(ω)

)

(3.47)

where, ρ is the azimuthal average of the correlation ratio ρ(r, ω) = φ(r,ω)
φ(0,ω)

, c(ω) is the phase

velocity at angular frequency ω, and Jn is the Bessel function of the order n.

φ(r, ω) =
1

T

∫ T

0

v0(t)vr(t)dt

where v0(t) and vr(t) are the recorded signals at two stations separated by distance r.

Equation (3.47) is valid for the vertical component. Corresponding and more complex

formulae exist for the horizontal components of the surface waves (Metaxian 1994, Bettig et al.

2001).

An example of a typical station layout is given in figure 3.24(a) for an array with an aperture
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of about 100 m. The irregular shape is generally induced by natural obstacles or artificial

structures (trees, streets, buildings, . . . ). The end points of the vectors joining all pairs of

stations are plotted on figure 3.24(b). For such an imperfect array, it is not possible to calculate

an azimuthal average for one single distance. The solution proposed by Bettig et al. (2001) is

to group pairs of stations along rings of finite thicknesses, as the pairs of grey circles drawn in

figure 3.24(b). Equation (3.47) can be modified to allow the calculation of average ratios over

a ring between r1 and r2.

Figure 3.24: (a) Map of sensor locations for a typical
array of 10 stations. (b) Azimuth-inter-distance plot:
each dot represents one couple of stations. The pairs
of grey circles show the limits that may be chosen for
rings of SPAC computation.
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(3.48)

Equation (3.48) has the same general shape as equation (3.47) and is strictly equal if r1

tends to r2. In the following, we will refer to equation (3.47) for the sake of simplicity.

3.3.2 Misfit

The misfit is evaluated for all data samples. It is defined in the same way as for the dispersion

curve inversion (equation (3.38) and Wathelet et al. 2004), taking into account the standard

deviation observed for each spatial auto-correlation sample :

misfit =

√
√
√
√

1
∑nR

k=1 nFk

nR∑

i=1

nFi∑

j=1

(ρdij − ρcij)2

σ2
ij

(3.49)

where, ρdij is the SPAC ratio of data curves at frequency fj and for ring i which is defined by

all inter-station distances between ri1 and ri2, ρcij is the SPAC ratio of calculated curves at

frequency fj and for ring i, σij is the observed variance for the sample at frequency fj and for
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ring i, nR is the number of rings considered, and nFi is the number of frequency samples for

ring i.

As for dispersion curves, the implemented algorithm can calculate a misfit for a set of

modal curves by including the contributions of all modes in the sum of equation (3.49). The

technique described in section 3.1.7 is also used for higher modes with a limited valid frequency

band. Options exist to restrict the misfit computation to the first decreasing part of the auto-

correlation curve (argument of Bessel’s function less than 3.2) and to avoid the part of the curves

close to 1 (argument of Bessel’s function greater than 0.4). In this case, even the fundamental

mode may have a restricted valid frequency interval for which the misfit is corrected in the

same way as for higher modes. However, experience has proved that those options are generally

useless and that the whole frequency range can be used for inversion (section 5.2).

3.3.3 Sensitivity
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Figure 3.25: Influence of Vs0 with a constant Poisson’s ratio. Vs0 varies from 100 to 1900 m/s. Vs1 is 2000 m/s.

Poisson’s ratio is 0.25 and the density is 2 t/m3 at all depths.

The case of figure 3.9(b) is taken as an example. Thus, Poisson’s ratio is 0.25, and Vs0

varies from 100 to 1900 m/s. The auto-correlation curves are calculated for all rings described

in figure 3.24(b) with equation 3.48. The results are plotted in figure 3.25. All curves are

between -0.4 and 1, converging towards 1 for low frequencies, and oscillating around zero for
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high frequencies. The shapes observed for the dispersion curves are transposed to the auto-

correlation, for instance, the strong variation in the slope at 0.9 Hz for the darkest curve. A

translation towards higher velocities on the dispersion curve appears as a translation of the

first minimum of the auto-correlation curve towards a higher frequency.

3.4 Conclusion

A robust and fast dispersion curve algorithm for one-dimensional models is developed and

tested in representative cases. However, the sensitivity study carried in this chapter is far from

being exhaustive. The objective is limited to the determination of the significant parameters

which might be inverted. Traditionally, Vs is the only one parameter included in the inversion of

dispersion curves. Nevertheless, this work demonstrates that, in some cases, Vp has also a non

negligible influence. The ellipticity and the auto-correlation curves can be easily computed as

well. For each spectral property, a misfit function is defined. These forward algorithms can be

used in a non-linear and stochastic inversion such as the neighbourhood algorithm (chapter 4).



Chapter 4

Parameterization of a ground model

The inversion principles are presented in chapter 2 as well as the particular method used in

this work: the neighbourhood algorithm. Chapter 3 details the computation of dispersion,

ellipticity and auto-correlation curves for a one-dimensional ground model, as well as the misfit

calculation in each case. To perform an inversion of experimental data, it is also necessary to

identify the physical unknowns of the problem. For most of the stochastic inversion methods,

models are characterized by a set of uniform random deviates between 0 and 1. The objective

of this chapter is to investigate the possible alternatives for transforming those random vectors

into physical parameters of a one-dimensional ground model. In a first approach, it can be

seen as a scaling of the interval [0, 1] to the prior uncertainty of a particular layer property.

But things become more complicated when some combinations of parameter values are not

physically acceptable. This problem is analysed in the first section. The efficiency of the

inversion algorithm decreases with the number of parameters. When the number of layers

increases, low velocity zones are likely to be present in the generated profiles. The second

section reviews the problems encountered with models with a great number of layers. The

third section proposes various solutions to handle velocity variations with a reduced number of

parameters.

4.1 Theoretical model used in parameterization tests

During this work, numerous ground models and parameterizations have been tried while de-

veloping the inversion software. In the next sections, the influence of the parameterization is

illustrated through inversion examples with a common reference ground model. This latter

one is made of three layers including the bottom half space. The properties of each layer are

specified in table 4.1. The velocity profiles, the dispersion and the ellipticity curves are shown

in figure 4.1.

The fundamental Rayleigh curve of figure 4.1(b) is considered in the next section as the

data curve that would have been obtained by any of the experimental methods presented in

chapter 1. Various inversion schemes are tried to retrieve the original velocity profiles. The

other curves are used in chapter 5 where more specialized inversions are reviewed.

65
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Contrary to synthetic curves that can be calculated on any arbitrary frequency interval,

the experimental curves are generally available on a restricted frequency band. Because there

is a close relation between the depth and the signal frequency content (section 3.1.8), the

quality of inversion strongly depends upon the frequency range of the measured dispersion
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Figure 4.1: Theoretical case for testing parameterizations. (a) Vp profile. (b) Dispersion curve for the
fundamental (solid) and the first higher mode (dots) of Love (grey) and Rayleigh (black). (c) Vs profile. (d)
Rayleigh fundamental ellipticity.

Layer Thickness Vs Vp Poisson’s ratio Density
Sediments 1 10 m 200 m/s 375 m/s 0.3 2 t/m3
Sediments 2 90 m 1000 m/s 1750 m/s 0.25 2 t/m3
Basement – 3000 m/s 4500 m/s 0.10 2 t/m3

Table 4.1: Properties of the reference model.

curve. Scherbaum et al. (2003) showed that the energy on the vertical component drastically

decreases in the vicinity and below the fundamental frequency of the soil structure. Rayleigh

dispersion curves are currently best measured on the vertical components, perpendicular to the

free surface. It implies that the uncertainties on the apparent velocity determination below the
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threshold frequency are usually significant and limit the range of available dispersion curves.

From the shape of the ellipticity (figure 4.1(d)), this effect is assumed to occur below 5.5 Hz.

Actually, the ellipticity curve has two maxima at 2.5 and 5.5 Hz. Hence, the energy on the

vertical component might be still sufficient below 5.5 Hz. In the absence of ambient vibration

simulations for this case, we cannot predict the value of the peak frequency of the measured

H/V and thus the magnitude of the high-pass filter effect. Hereafter, two cases are considered:

a broad band (0.2 to 20 Hz) and a narrow band (5.5 to 15 Hz) dispersion curve. The second

one is probably closer to frequency range obtained for real experiment with Rayleigh waves.

4.2 Thickness, Vp, and Vs

For each layer of the ground model, the considered parameters are: the thickness (h), and the

velocities Vp and Vs. The density is generally not inverted here as its influence on the dispersion

curve is usually small compared to the other parameters’ one (section 3.1.8).

In this section, we make use of the standard neighbourhood algorithm developed in Fortran

by Sambridge (1999a). For each generated parameter set, a misfit value must be calculated by

the forward algorithm, even if the parameters do not fulfil with physical and prior conditions.

With the original inversion code, it is not possible to reject a particular model. The wrong

model might be discarded by returning an arbitrary high misfit to the neighbourhood algorithm.

However, we prove hereafter that it is an inefficient method, especially when the number of

parameters is increasing. Assuming a parameter set P1 . . . Pn, when there is only one physical

condition of the type Pi < Pj, there is one chance over two to get a good model. From the

combinatorial probabilities, if the number of conditions increases up to m, the chance of getting

one good model reduces to 1
2m . Typically, for a three-layer model, the number of parameters is

8 and the number of physical conditions of the type Pi < Pj is also 8. Hence, the probability of

generating one good model is 1/256. Usual values for the tuning parameters of the neighbour-

hood algorithm are itmax=100, ns=100, and nr=100 to generate 10000 models. In most cases,

three iterations are thus necessary to get at least one good model. At the next iteration, 100

new models are generated in the 100 best cells. Hence, one new model is added close to the

good model and 99 other models are still selected in the wrong regions of the parameter space.

Finally, very few good models are obtained and the good regions of the parameter space are

poorly investigated. All the wrong models are stored by the neighbourhood algorithm and all

of them are included in the computation of the Voronoi geometry. As the number of models is

increasing, the rate of the model generation is always decreasing, slowed down by useless wrong

models. At the end of our work, we developed a modified neighbourhood algorithm that takes

into account the model rejection in an efficient way (sections 2.4). However, this study is based

on the standard algorithm which requires an appropriate parameter transformation in order to

avoid generating wrong ground models. This part is covered in this section.

The thicknesses of the layers may take whatever positive value. Thus, the transformation

is just a linear scaling from [0, 1] to [hmin, hmax]. The layer thicknesses may also be set by
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specifying the absolute depth of the bottom of each layer (zi). In this case, the user must

avoid overlapping of the depth ranges which may induce negative thickness. As for thickness,

it also reduces to a linear scaling from [0, 1] to [zmin, zmax]. Mixtures of both types of position

parameters are not possible in the developed software.

Vp and Vs are linked by Poisson’s ratio. For geological materials, Poisson’s ratio is always

between 0 and 0.5. Hence, Vp and Vs must satisfy the following inequalities 0 < Vs <
√

2
2

Vp =

0.707Vp. There are two alternatives to parameterize Vp and Vs satisfying the conditions, which

both make use of ratio Vsp(ν) = Vs

Vp
:

1. Calculating Vs from the first parameter with a scaling from [0, 1] to [Vs,min, Vs,max]. The

second parameter is the ratio Vsp scaled to [Vsp,min, Vsp,max] where 0 < Vsp,min and Vsp,max <
√

2
2

.

2. Calculating Vp from the first parameter with a scaling from [0, 1] to [Vp,min, Vp,max]. The

second parameter is the ratio Vsp with the same limits as in the last case.

The first option is more intuitive because Vs has the greatest influence on the dispersion

curve. However, the generated Vp values range from
√

2Vs to ∞ or to any value above common

real observations. Secondly, the prior probabilities of Vs and Vsp are uniform on the user

specified range. Considering parameters independently (Vs or Vsp), it means that the whole

parameter space is equally investigated. From the parameterization point of view, every model

has an equal chance to be taken at random. However, considering Vp, it is the ratio of two

uniform random variables Vs and Vsp, and its density of probability is far from being constant

over the user specified range. Thus, some Vp values have more chances to be generated by

the neighbourhood algorithm than others. Because Vp is not always well constrained by the

dispersion curve, the parameterization may artificially orientate the inversion towards particular

models rather than exploring the whole parameter space. From the user point of view, the Vp

profile may appear better constrained than it is really.

On the other hand, taking the second option, Vp profiles are uniformly investigated. Because

Vs is relatively well constrained by the dispersion curve, the influence of the parameterization

is only sensitive at the beginning of the process. Once the area of solution is delineated, the

bias introduced by the non-uniform probability becomes negligible. Also, the range for Vp is

fixed by the user and no abnormal Vp value is generated. Vs values are always less than
√

2
2

Vp.

For models with a reasonable number of layers (up to three or four), this option is probably

the best one and it has been chosen in the software implementation tested in the next sections.

For a stack of layers, a common condition is the absence of low velocity zones or a monotonous

increasing profile. This aspect is studied in section 4.3 for a stack of N layers. The increasing

of velocity with depth may be parameterized by setting the velocity increment at each interface

as parameters (P ), and (Vp)i = (Vp)i−1 + P . Vs is calculated as above with the values of Vsp.

Low velocity zones may still appear on Vs profiles. When necessary, they may be avoided by

multiplying the final misfit by a penalty factor, function of the magnitude of the low velocity

zone. This technique works only for a reduced number of layers (up to three or four), for reasons
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probably similar to the ones detailed in the introduction of this section. We use it in the simple

parameterizations hereafter.

4.2.1 Two layers

The shape of the fundamental Rayleigh dispersion curve in figure 4.1(b) has a complex shape.

However, we first test if it is possible to invert it with a simple model made of one layer overlying

a half space. The curve is resampled with 50 points regularly distributed on a log frequency

scale. The utilized parameters are detailed in table 4.2. The neighbourhood algorithm is

Layer Thickness Vp Vs/Vp Density
Sediments 1 to 200 m 200 to 2,000 m/s 0.01 to 0.707 2 t/m3
Half-space – +10 to 3,000 m/s 0.01 to 0.707 2 t/m3

Table 4.2: Parameterized model for two-layer inversions. The ”+” sign stands for incremental velocity: the
parameter is the velocity gap between the first and the second layer.
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Figure 4.2: Inversion of the full dispersion curve with a two-layer mode. (a) Resulting Vp profiles. (b)
Resulting Vs profiles. The black lines are the theoretical velocity profiles. (c) Dispersion curves corresponding
to models of figures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.

tuned to be as exploratory as possible, generating 100 models per iteration (ns) in the current

100 best cells (nr). Runs of 50 iterations are started with five distinct random seeds (chapter 2)

to test the robustness of the results. These parameters are usually adjusted by trial and error.

The dimension of the parameter space is 5. Each individual process generates an ensemble of

5100 possible solutions ranked by their misfit values. The results of the inversion are shown in

figure 4.2 in terms of velocity profiles. Only the models with a misfit less than 0.1 are selected.

The shape of the dispersion curve at low frequency (figure 4.1) is obviously too complex to

be correctly inverted with a simple model made of two layers. A more complex structure has
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to be assumed in order to invert the dispersion curve between 0.2 and 20 Hz (section 4.2.2).

However, the Vs profile below 8 m is well retrieved. The shapes of the reference and the

calculated dispersion curve at high frequency (above 5 Hz) are similar. The low frequency

part of the curve prevents the misfit from being improved and it influences the error on the

depth and on Vp. In the next paragraph, better results can be achieved by considering only the

dispersion curve at high frequency.

The fundamental Rayleigh dispersion curve between 5.5 and 15 Hz, resampled with 30

points regularly distributed on a log frequency scale and described in section 4.1 (figure 4.1) is

inverted in the same conditions as above. Figure 4.3 shows the minimum misfit evolution with

the number of generated models. The curve is never regular as already noticed by Sambridge

(1999a). But in general, the variations are progressively damped if the number of generated

models is sufficient.
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Figure 4.3: Inversion with a two-layer model:

variation of the minimum misfit with the inver-

sion advance. The five curves correspond to the

five inversion processes initiated.

In figure 4.4, each generated model is represented

by a dot with a grey scale depending on the mis-

fit value. Figure 4.4(a) is a projection of the five

dimension parameter space on the plane z1 − Vs0,

while the other plots (figures 4.4(b) to 4.4(f)) show

the one-dimensional variation of each parameter ver-

sus the misfit value. The minimum achieved misfit

is around 0.01. All generated models are plotted in

figure 4.4(a). The shapes for lowest misfit values

in figures 4.4(b) to 4.4(f) give valuable information

about the posterior marginal uncertainties of one pa-

rameter. For instance, accepting a level of error on

the experimental curve of 0.05, all values of Vp0 be-

tween 300 and 2000 m/s ensure a good fit of the data

curve. Vp0 (theoretical value is 375 m/s) is better re-

solved only if misfits below 0.03 are considered. In

figures 4.4(d) to 4.4(f), it is clear that the inversion algorithm is not exploratory enough to

sample the whole parameter space for poorly resolved parameters. For well constrained param-
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Figure 4.4: Inversion with a two-layer model: parameter space. (a) Projection of model points on the plane
z1 − Vs0. One-dimensional marginal for (b) z1, (c) Vs0, (d) Vs1, (e) Vp0, and (f) Vp1.

eters (z1 and Vs0), the results are approximately the same for all runs. For other parameters,



4.2. THICKNESS, VP , AND VS 71

each additional run may brought some new solutions, improving the global sampling of the

parameter space. Even with only five parameters, the complexity of the parameter space is

such that an exhaustive sampling would be prohibitive.

The results of the inversion are shown in figure 4.5 in terms of velocity profiles. Only

the models with a misfit less than 0.1 are selected (≈25000 models). Retrieved Vp and Vs
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Figure 4.5: Inversion with a two-layer model: velocity profiles. (a) Resulting Vp profiles. (b) Resulting Vs

profiles. The black lines are the theoretical velocity profiles. (c) Dispersion curves corresponding to models of
figures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve during inversion.

profiles are visible in figures 4.5(a) and 4.5(b). The black lines are the theoretical velocity

profiles. The dispersion curve calculated for profiles of figures 4.5(a) and 4.5(b) are shown in

figure 4.5(c) where the black dots are the simulated experimental curve defined on a restricted

range (section 4.1). According to the level of confidence on the experimental curve, darkest

models may be discarded. The lightest models (misfit < 0.3) fit nicely with the theoretical

model except for Vp within the basement. Vs is well retrieved for the first 8 m whereas a wide

range of Vp values may explain the observed dispersion curve. Even for Vs, the uncertainties

greatly increase from 8 m, below the depth of the velocity contrast. However, if the dispersion

is known with a very good confidence and a good precision, Vp0 can be correctly estimated

because it is not possible to find any model with Vp0 > 500m/s and a misfit below 0.03.

A common solution to improve the precision for deeper structure is to enlarge the frequency

range of the dispersion curve. For a two-layer parameterization, broader frequency ranges lead

to badly resolved structures with a minimum achievable misfit above 0.1 (figure 4.2). Hence,

it is not possible to find an equivalent two-layer model for the more complex soil structure. In

a real situation, when a two-layer parameterization gives worse results than a more complex

parameterization, it is a piece of evidence that the structure is probably not simply made of

homogeneous sediments overlying a hard-rock basement. In the next section, a three-layer

parameterization is used and the influence of the frequency range is checked.
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4.2.2 Three layers

The fundamental Rayleigh dispersion curve shown in figure 4.1 is inverted with a three-layer

model. Various types of dispersion curve sampling are reviewed in this section. Finally, the

effect of the prior information on the depths is checked.

Broad band dispersion curve

The dispersion curve is sampled with 50 points regularly distributed on a log frequency scale

and on a wide frequency range from 0.2 to 20 Hz. The parameters are of the same type as for

the preceding case with one supplementary layer. Table 4.3 gives the list of parameters and

their prior intervals. The Vp profile is imposed to be monotonously increasing by setting positive

velocity variations as parameters rather than the absolute value. Vs is kept monotonous by the

penalization technique (introdution of section 4.2) on the low velocity zones.

Layer Thickness Vp Vs/Vp Density
Sediments 1 1 to 50 m 200 to 2,000 m/s 0.01 to 0.707 2 t/m3
Sediments 2 1 to 200 m +10 to 2,000 m/s 0.01 to 0.707 2 t/m3
Half-space – +10 to 3,000 m/s 0.01 to 0.707 2 t/m3

Table 4.3: Parameterized model for three-layer inversions. The ”+” sign stands for incremental velocity: the
parameter is the velocity gap between the first and the second layer.

Five independent runs are started with ns (number of samples per iteration) and nr (number

of cells to resample) being 100. The number of iterations is set arbitrarily to 150. The evolution

of the minimum misfit with the number of generated models (not shown) finally proves that

values for the tuning parameters are necessary and sufficient. The total number of generated

model is hence 75500, with a minimum misfit around 0.02. The Vp and Vs profiles of models

(8900) for which the misfit is less than 0.1 are plotted in figures 4.6(a) and 4.6(b), respectively.

The corresponding dispersion curves are shown in figure 4.6(c).

On the first ten metres, the inverted profiles are very similar to those obtained with the

two-layer parameterization. The velocities of the basement are also relatively well retrieved

(below 100 m). The posterior uncertainties of the intermediate layer are higher than the one of

the first layer, mainly because of the low sensitivity of the dispersion curve to the intermediate

layers (section 3.1.8 on page 54). Though Poisson’s ratio is left totally free, the uncertainties

on Vp and Vs of the intermediate layer are of the same order. The uncertainty on the depth

determinations are always high even for the first interface at ten metres (errors up to nearly

40%1). A precise inversion of the depths is possible but requires a very high precision on the

dispersion curve.

This case is theoretical. During real experiments, the dispersion is not defined down to

0.2 Hz if the resonance frequency (given by the main peak of the ellipticity or of the measured

H/V) is around 5.5 Hz. The effect of such limitation is tested in the next section.

1The depth of the best models is around 10 m. Considering a misfit of 0.05 as acceptable, the depth may
varies between 8 and 14 m, which makes an error between 20 and 40%.
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Figure 4.6: Inversion with a three-layer model over a broad frequency range. (a) Resulting Vp profiles. (b)
Resulting Vs profiles. The black lines are the theoretical velocity profiles. (c) Dispersion curves corresponding
to models of figures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.

Narrow band dispersion curve

The dispersion curve is resampled with 30 points on a narrow frequency range from 5.5 to 15 Hz

as in section 4.2.1. The parameterization is exactly the same as in the above section (table 4.3).

Ten independent runs are started with the same characteristics as in the above section. The

number is increased to improve the parameter-space sampling.

The models with a misfit lower than 0.1 (≈ 4800 matches) are displayed in figure 4.7. The

minimum misfit is around 0.02. The Vs profile is correctly retrieved down to 8 or 10 m like in

the two layer case in section 4.2.1. Below, a lot of models are virtually possible. With a very

high precision on the dispersion curve, Vs profile seems to be correctly retrieved down to 100 m,

for instance the white one in figure 4.7(b). However, hereafter (narrow band dispersion curve

with prior information on Vp, on page 77), we show that the parameter space investigation

is not sufficient in this case leading to optimistic conclusions. Below 100 m, all models are

possible even with a very low misfit (the white one with an interface at 170 m).

Low frequency dispersion curve

From the above discussion, the low frequency part of the dispersion is absolutely necessary to

investigate deep layers. In this paragraph, we show an example of inversion without the high

frequency part, simulating an experiment with only large aperture arrays. The fundamental

Rayleigh dispersion curve in figure 4.1(b) is resampled with 30 samples from 0.2 to 8 Hz.

The inversion is run with five distinct processes with the parameterization detailed in ta-

ble 4.3. The retrieved velocity profiles are shown in figures 4.8(a) and 4.8(b). The corresponding

dispersion curves are plotted in figure 4.8(c). Whereas the depth and the velocities (Vp and Vs)
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Figure 4.7: Inversion with a three-layer model over a restricted frequency range. (a) Resulting Vp profiles. (b)
Resulting Vs profiles. The black lines are the theoretical velocity profiles. (c) Dispersion curves corresponding
to models of figures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.
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Figure 4.8: Inversion with a three-layer model over a low frequency range. (a) Resulting Vp profiles. (b)
Resulting Vs profiles. The black lines are the theoretical velocity profiles. (c) Dispersion curves corresponding
to models of figures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.
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of the basement are obtained with approximately the same precision as in figure 4.6, strong bias

is observed for the properties of the first layers. Contrary to all preceding inversion examples

of this chapter, the average retrieved profile is false. The average Vs0 found is 400 m/s while

the correct value is 200 m/s. Even more annoying, the models with Vs0 = 200 m/s have all

very bad misfits. In the absence of any constraint on Vs0, the neighbourhood algorithm and

the chosen parameterization2 orientate the search to an arbitrary and false profile.

Those results highlight the need for a good definition of the dispersion curve at high fre-

quency (from 8 or 10 Hz in this case). In many cases, the ambient noise techniques loose

reliability in the highest frequency range due to various factors (unknown sources distribution

and source type, higher modes, too large aperture for arrays,. . . ). Active sources methods, for

which a better control on the source parameters is possible, are able to provide complementary

information at such frequencies.

Prior information on depth

If the depth of any particular velocity contrast is known from other investigations like a reference

borehole or a penetration test, it can be introduced in the parameterization. Such a test is

performed on the same dispersion curve as in figure 4.6 with the parameters defined in table

4.4. The depth is supposed to be known with an error of 5 m.

Layer Depth Vp Vs/Vp Density
Sediments 1 1 to 90 m 200 to 2,000 m/s 0.01 to 0.707 2 t/m3
Sediments 2 95 to 105 m +10 to 2,000 m/s 0.01 to 0.707 2 t/m3
Half-space – +10 to 3,000 m/s 0.01 to 0.707 2 t/m3

Table 4.4: Parameterized model for three-layer inversions with prior depth. The ”+” sign stands for incre-
mental velocity: the parameter is the velocity gap between the first and the second layer.

Five runs are launched generating the models displayed in figure 4.9. The misfit values can

be compared directly to the ones of figure 4.7 because the dispersion samples used to calculate

them are exactly the same. Reducing the depth prior interval has obviously a positive influence

in the inversion process. The main effect is to reduce the uncertainty of the velocities of the

intermediate layer.

In figure 4.9, the improvement of the posterior uncertainty may be due to the strong con-

straint on the large band dispersion curve. The same parameterization is also tested on the

dispersion curve with a narrow frequency band as in figure 4.7. The results are shown in

figure 4.10. Forcing the depth of the basement indisputably allows a better retrieval of the

velocity in the second layer below 10 m. However, the parameterized model made of three

uniform layers imply that the velocity has a constant profile between 10 and 100 m. Stating

that the velocity profiles are correctly measured down to 100 m is certainly false. The results

at 100 m are influenced by the constraints on Vs between 10 and 25 m. Inversions with one

2For Vs, the prior density of probability is not uniform in this parameterization, as explained at the beginning
of section 4.2
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Figure 4.9: Inversion with a three-layer model with prior depth. (a) Resulting Vp profiles. (b) Resulting Vs

profiles. The black lines are the theoretical velocity profiles. (c) Dispersion curves corresponding to models of
figures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve during inversion.
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Figure 4.10: Inversion with a three-layer model at high frequency with prior depth. (a) Resulting Vp profiles.
(b) Resulting Vs profiles. The black lines are the theoretical velocity profiles. (c) Dispersion curves corresponding
to models of figures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.
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or more supplementary degrees of freedom must be carried out to define the total penetration

depth of the method.

In conclusion, any prior information about the depths of the known velocity contrasts help

the inversion of the dispersion curves even for incomplete ones. Like any other information

source, its reliability must be ensured and the length of the fixed depth interval set according

to the data source confidence.

Prior information on Vp

Vp profiles may also be measured by other means not related to surface wave properties. Re-

fraction tests, borehole logging, cross-hole, . . .may bring valuable information about Vp. Like

the depth, the prior information about Vp is introduced in the parameterization itself. In the

above sections, the Vp profile is left as totally free in a very large interval. Here, we fix it

in a deterministic way, removing Vp from the parameter list. Table 4.5 details the remaining

parameters. The dimension of the parameter space reduces from 8 to 5.

Layer Thickness Vp Vs/Vp Density
Sediments 1 1 to 200 m 375 m/s 0.01 to 0.707 2 t/m3
Sediments 2 1 to 200 m 1750 m/s 0.01 to 0.707 2 t/m3
Half-space – 4500 m/s 0.01 to 0.707 2 t/m3

Table 4.5: Parameterized model for three-layer inversions with prior Vp.

Using the standard implementation of the neighbourhood algorithm, it is not possible to

disconnect the depths of the Vs and Vp profiles. Hence, a real Vp profile cannot be fixed without

forcing the Vs profile to have interfaces at the same depths. For this test, the depths of the Vp

profile are left as free parameters and they follow the depths of the Vs profile. The conditional

neighbourhood algorithm (section 2.4) would allow totally independent profiles for Vs and Vp.

Consequently, the Vp profile could be fixed without affecting directly the inversion of Vs.

The results are shown in figures 4.11 and 4.12 for a dispersion curve defined over a broad

and a narrow frequency band, respectively (five distinct inversion processes in each case). The

minimum misfit is around 0.002 for both cases. In figure 4.11, 31000 models have a misfit lower

than 0.1 (23000 in figure 4.12), the threshold used to select model.

Comparing figures 4.6 and 4.11, the uncertainty of Vs on the intermediate layer is greatly

reduced, showing a direct effect of the fixing Vp0. However, fixing Vp has also an effect on the

depth error of the deepest contrast. Other tests with wrong prior Vp values show that the final

Vs results are weakly affected by over-estimated Vp profiles. In contrast, any under-estimation

of Vp completely ruins the inversion of Vs because the maximum of Vs is automatically set to
√

2
2

Vp. This is why Vp values can be fixed only when reliable data exist. Tests with and without

the prior information must be carried out. When there is no pre-existing data about Vp, the

best option is to include it in the parameterization like in preceding section, with a very large

prior interval.
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Figure 4.11: Inversion with a three-layer model with prior Vp. (a) Resulting Vp profiles. (b) Resulting Vs

profiles. The black lines are the theoretical velocity profiles. (c) Dispersion curves corresponding to models of
figures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve during inversion.
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Figure 4.12: Inversion with a three-layer model at high frequency with prior Vp. (a) Resulting Vp profiles. (b)
Resulting Vs profiles. The black lines are the theoretical velocity profiles. (c) Dispersion curves corresponding
to models of figures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.



4.3. STACK OF N LAYERS 79

The parameterization used for generating figure 4.12 is a particular case of the more general

parameterization relating to figure 4.7. Hence, if the investigation of the parameter space was

perfect for figure 4.7, all models appearing in figure 4.12 would be also generated by the inversion

process illustrated in figure 4.7. Clearly, the introduction of reliable prior information about Vp

also makes the inversion more efficient leading to a better parameter space investigation. From

figure 4.12, if the dispersion curve is known with a sufficient precision (acceptable misfit at 0.2),

Vs1 can be determined with a precision of 200 m/s (≈20%) down to 20 or 30 m. Without the

Vp information this uncertainty is greater than 200 m/s (case of figure 4.7).

4.3 Stack of N layers

In section 4.2, the soil structure is modeled with a few layers of varying thicknesses. Alter-

natively, the velocity variation may be discretized by a great number of thin layers with fixed

thicknesses. It is the usual technique for linearized inversion methods (Herrmann 1994). It

generally implies a greater number of parameters than the approach described in section 4.2.

In this section, we invert the same dispersion curve as in section 4.2. However, Vp is supposed

to be known in a deterministic way and without bias to allow the comparison of arbitrary and

increasing profiles. In section 4.3.1, an additional inversion case is proposed with Vp and Vs as

the variable parameters. The variation of velocity is represented by a stack of ten layers with

fixed thicknesses (2, 3, 5, 8, 12, 17, 23, 30, 38, and 47 m) plus a half space. The density is fixed

to 2 t/m3 in all layers.

4.3.1 Arbitrary profile

The model is made of 11 layers with one parameter per layer (Vsp, the ratio of Vs over Vp).

Table 4.6 summarizes the properties of each layer.

Layer Depth Vp Vs/Vp Density
0 2 m 375 m/s 0.01 to 0.707 2 t/m3
1 5 m 375 m/s 0.01 to 0.707 2 t/m3
2 10 m 375 m/s 0.01 to 0.707 2 t/m3
3 18 m 1750 m/s 0.01 to 0.707 2 t/m3
4 30 m 1750 m/s 0.01 to 0.707 2 t/m3
5 47 m 1750 m/s 0.01 to 0.707 2 t/m3
6 70 m 1750 m/s 0.01 to 0.707 2 t/m3
7 100 m 1750 m/s 0.01 to 0.707 2 t/m3
8 138 m 4500 m/s 0.01 to 0.707 2 t/m3
9 185 m 4500 m/s 0.01 to 0.707 2 t/m3

Half-space – 4500 m/s 0.01 to 0.707 2 t/m3

Table 4.6: Parameterized model for N-layer inversions.

Poisson’s ratios are totally independent and Vs profiles might be generated with eventually

various LVZs. The inversion is started with five distinct random seeds. The number of new
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models per iteration is 100 (ns) and the number of cells resampled is 100 (nr). 150 iterations are

successively performed to obtain a total of 75,500 models. The results are shown in figure 4.13.

The minimum misfit is around 0.005.
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Figure 4.13: Inversion with a N-layer model accepting LVZ (Vs only). (a) Resulting Vs profiles. The black
lines are the theoretical velocity profiles. (b) Dispersion curves corresponding to models of figure (a). The black
dots are the theoretical dispersion curve used as the target curve during inversion.

The Vs profiles in figure 4.13(a) can be directly compared with figure 4.11(b) also obtained

with a fixed Vp profile and on the same dispersion curve. The presence of LVZs slightly increases

the non-uniqueness of the problem. The effect of a very slow layer may be thwarted when

overlying a faster layer.

In figure 4.13, the fixed Vp profile prevents from generating a number of additional models.

Another inversion case is then proposed with varying Vp and Vs profiles. The range of Vp values

inside each layer is set to [200, 6000] m/s. The inversion is started with 20 distinct random

seeds to obtain a total of 202,000 models. The results are shown in figure 4.14. The minimum

misfit is around 0.012. 90,000 models have misfit less than 0.1.

The Vs profiles in figure 4.14(b) can be directly compared with figure 4.6(b) obtained on

the same dispersion curve. In this case, the presence of LVZs drastically increases the non-

uniqueness of the problem. From figure 4.14, no information can be retrieved between 10 m

and 185 m. By contrast, figure 4.6 shows for the same dispersion curve that interesting in-

formation can be extracted by assuming that no LVZ are present. However, in figure 4.6, the

velocities just below 10 m and just above the contrast around 100 m must be the same, which

is probably too restrictive. In the next sections, various approaches are proposed to allow ve-

locity variations inside layers and avoiding LVZs with the standard neighbourhood algorithm.

However, a simpler solution can be implemented with the conditional neighbourhood algorithm.
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Figure 4.14: Inversion with a N-layer model accepting LVZ (Vp and Vs). (a) Resulting Vp profiles. (b)
Resulting Vs profiles. The black lines are the theoretical velocity profiles. (c) Dispersion curves corresponding
to models of figure (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.

4.3.2 Vs inversion without LVZ

In common geological situations, Vs increases with depth: rock weathering, sediment com-

paction,. . . (Bachrach et al. 2000, Scherbaum et al. 2003). However, the velocity may

decrease with depth in some cases: saturated layers, clays overlied by sandy formations, hard

ground above unconsolidated sediments, lava flows,. . . From the above example (section 4.3.1),

if the soil structure is made of thin intercalations of soft and rigid layers, the dispersion curve

inversion cannot resolve the properties of each individual layer. Consequently, a limited number

of LVZs can be tolerated in the model when the geological structure of the area justifies it. Be-

tween two particular LVZs, the velocity must be constant or must increase with depth. Taking

these conditions into account during inversion is capital but not straightforward. There are

numerous ways of implementing such prior information, we developed some of them, described

in appendix B.

Theoretically, the parameterization must ensure that any ground model included in the

parameter space has an equal chance to be generated by the neighbourhood algorithm. If this

is not verified, the inversion algorithm itself introduces prior information, prefering particular

classes of models to others. For instance, in section 4.3.1, all Vp profiles have the same chance

to be generated, but the Vs profiles are calculated by the mutliplication of two random variables

and have not a uniform probability (figure B.1). The prior distributions of the proposed methods

are detailed in appendix B.

The inversion of the broad band dispersion curve is started with five distinct random seeds,

using the scaled diagonal parameterization for Vs profiles and a fixed Vp profile (section B.8).

50 iterations are launched per inversion process generating a total of 25500 models. Among
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them, 14000 have a misfit lower than 0.1. The results are shown in figure 4.15. In the same

conditions, the scaled interpole method tested in figure B.8 produces only 285 models with

misfit lower than 0.1. In this case, the choice of the method for generating models has a strong

influence on the global efficiency of the inversion algorithm.
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Figure 4.15: Inversion with a N-layer model rejecting LVZ by the diagonal method. (a) Resulting Vs profiles.
The black lines are the theoretical velocity profiles. (b) Dispersion curves corresponding to models of figure (a).
The black dots are the theoretical dispersion curve used as the target curve during inversion.

0 1000 2000 3000
Vs (m/s)

0

40

80

120

160

200

D
ep

th
(m

)

120 160 200 240 280
Vs (m/s)

0

2

4

6

8

10

D
ep

th
(m

)

(a)

(b)

Figure 4.16: Comparison of a three-layer and N-layer inversions. The minimum and maximum Vs for models
with a misfit lower than 0.02 are reported for each inversion case: three-layer inversion (plain lines), N-layer
with LVZs (dotted lines), and N-layer without LVZs (dashed lines). Figure (b) is a zoom on the first ten metre
for clarity.

In figure 4.16, the inversion with a three-layer model and with a N-Layer model accepting

LVZs (figure 4.13) or rejecting LVZs (figure 4.15) are compared. The misfit are calculated on

the same data curves in the three cases. Only the minimum and maximum Vs observed at each

depth for each case is reported in the figures. The inversion which accepts LVZ always results



4.4. NON-UNIFORM LAYERS 83

with quite large uncertainties compared to the inversions assuming an increase of the velocity

with depth. The three-layer inversion gives more information about the depth uncertainty,

compared to other cases, whereas it under-estimates the uncertainty on the velocity, especially

below the velocity contrasts (between 10 and 70 m, and between 100 and 180 m) and near the

surface (between 0 and 5 m).

In conclusion, inverting with a very simple model made of uniform layers does not provide

the complete uncertainty about the ground structure. In contrast, the inversion with a great

number of layers requires the introduction of relationships between the velocities of adjacent

layers, to avoid generating lot of low velocity zones. Those relationships can be translated into

parameterization rules for a simple structure where Vp is constant or increasing.

4.4 Non-uniform layers

In the preceding section, it has been shown that simple models with homogeneous layers usually

under-estimate the posterior uncertainty. A solution to this issue is proposed in this section

by the introduction of vertically heterogeneous layers. A linear and a power law increase of

the velocity with depth are considered here. The dispersion curve computation is designed for

layers with homogeneous properties. Consequently, in both cases, the variation is discretized

by several sub-layers for which properties are managed by the characteristics of the main het-

erogeneous layer.

4.4.1 Linear variation

The velocity (either Vp or Vs) at depth zi is given by

Vi = V0 +
Vn − V0

zn − z0

(zi − z0) (4.1)

where z0 is the top of the considered layer, V0 is the velocity at z0, zn is the bottom of the

considered layer, and Vn is the velocity at zn. For dispersion curve computations, the func-

tion Vi(z) is discretized into a fixed number of homogeneous sub-layers. Their number (n)

is generally kept as low as possible (between 5 and 10) to avoid an increase of the inversion

computation time. The thicknesses of the sub-layers are all equal. This kind of profile is not

implemented in the inversion algorithm based on the standard neighbourhood algorithm. For

historical reasons, it is only available for the conditional neighbourhood algorithm.

4.4.2 Power law variation

The velocity (either Vp or Vs) at depth zi is given by

Vi = V0((zi + 1)α − (z0 + 1)α + 1) (4.2)
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where z0 is the top of the layer considered, V0 is the velocity at z0, α is the power-law exponent,

generally varying between 0 and 1. The substraction in equation 4.2 is necessary if the power

law variation is used for deep layers (z0 > 0). Like the linear profiles, the function Vi(z) is

divided into a fixed number of homogeneous sub-layers. Setting the exponent α as a parameter

is not a good choice, because it generates models with an uncontrolled maximum velocity. The

situation is even worse if several heterogeneous layers are used in the same structure. A better

solution is to set the top (V0) and the bottom (Vn) velocity as two distinct parameters. For

the conditional neighbourhood algorithm, the simple condition V0 < Vn is introduced. For the

standard neighbourhood algorithm, V0 and dV are the parameters, Vn being equal to V0 + dV .

α is calculated by solving the following equation:

f(α) = (zn + 1)α − (z0 + 1)α − Vn − V0

V0

= 0 (4.3)

A few iterations with the bissection method are generally necessary. There is always only one

solution between 0 and 1 because f(α) is monotonously increasing. Other iterative methods

are not appropriate.

If the thicknesses of the sub-layers are constant, the power law variation is badly sampled.

Very high velocity jumps are observed for the first sub-layers. Thus, it is better to impose a

constant velocity jump from one sub-layer to the next one, equal to dV
n

. The depth of the top

and of the bottom of each sub-layer is then easily calculated from

z0, . . . ,

(

i
dV

V0

+ (z0 + 1)α

)1/α

− 1, . . . , zn (4.4)

Inside each sub-layer, for the sake of simplicity, we set the velocity of the sub-layer to the value

of the analytical power law function at the middle of the sub-layer. Hence,

Vi = V0

[(
zi−1 + zi

2
+ 1

)α

− (z0 + 1)α + 1

]

, i = 1, . . . , n (4.5)

To summarize, from the thickness of the layer and dV (or Vn), it is possible to define in

a unique way the individual thicknesses of each sub-layer and their velocities. An interme-

diate computation is necessary to obtain the value of the exponent. The exponent α can be

recalculated from the thicknesses and the velocities of the two first sub-layers by solving the

equation

g(α) = (z2 + 1)α − V2

V1

(z1 + 1)α +

(
V2

V1

− 1

)

(z0 + 1)α =
V2

V1

− 1 (4.6)

g(α)−
(

V2

V1
− 1
)

is also monotonously increasing and have only one root between 0 and 1. It is

solved by bissection.

The parameters for a layer with power law gradient are V (either Vp or Vs), dV ( or Vn),

and the thickness H (or z0 and zn, the depth of the top and of the bottom of the layer). The

number of sub-layers is only a tuning parameter.
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Figure 4.17: Inversion with a three-layer model with heterogeneous layers, with prior information about the
depth of basement. (a) Resulting Vp profiles. (b) Resulting Vs profiles. The black lines are the theoretical
velocity profiles. (c) Dispersion curves corresponding to models of figures (a) and (b). The black dots are the
theoretical dispersion curve used as the target curve during inversion.
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Figure 4.18: Inversion with a three-layer model with heterogeneous layers. (a) Resulting Vp profiles. (b)
Resulting Vs profiles. The black lines are the theoretical velocity profiles. (c) Dispersion curves corresponding
to models of figures (a) and (b). The black dots are the theoretical dispersion curve used as the target curve
during inversion.
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An example of the use of layers with a power law variation in the inversion is shown in

figure 4.17. This is the same case as in figure 4.10 where the two first homogeneous layers are

replaced by layers with power law variations. The number of fixed layers is five in each case.

Two parameters are added to the parameter space (making a total of 10 parameters) of the

inversion plotted in figure 4.10. The Vp variation across the layers can vary between 0 and

2000 m/s. The minimum achieved misfit is similar to the homogeneous case, but the posterior

uncertainty on the second layer is larger in these later inversions.

This kind of layer is also tested with a large band dispersion curve (from 0.2 to 20 Hz) in

figure 4.18. Compared to figure 4.6, the uncertainty are slightly increased.

4.5 Conclusions

To conclude, figure 4.19 summarizes the Vs profiles obtained for a three-layer inversion with

uniform velocity layers (from figure 4.6) and with gradient velocity layers (from figure 4.18), and

for a N-layer model accepting low velocity zones (from figure 4.14). The calculated uncertainties

are different in each case. The parameterization has a drastic influence over the inversion of

dispersion curves, the solution of which is poorly constrained if the correct prior information is

not introduced.

0 1000 2000 3000
Vs (m/s)

0

40

80

120

160

200

D
ep

th
(m

)

0 1000 2000 3000
Vs (m/s)

0

40

80

120

160

200

D
ep

th
(m

)

0 1000 2000 3000
Vs (m/s)

0

40

80

120

160

200

D
ep

th
(m

)

Misfit value
0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060

(a) (b) (c)

Figure 4.19: Comparison of three type of parameterizations (Vs profiles): (a) inversion with a three-layer
model with homogeneous layers, (b) inversion with a three-layer model with gradient layers, and (c) ten layers
of fixed thicknesses, accepting low velocity zones.

This chapter shows that even for a simple model with only two contrasts, the inversion of

the dispersion curve does not provide one unique solution. This work highlights the need for

large band dispersion curves in order to reach deep soil structures. For real cases, the dispersion

curves do not have a perfect shape as it is the case in this chapter. Three-dimensional effects,

lateral heterogeneities,. . . are some of the effects that may alter the shape of the measured curve.
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In this context, the prior information is of prime importance.
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Chapter 5

Enhanced inversions

In this chapter, the inversion of fundamental Rayleigh dispersion curves (chapter 2) is extended

to several types of special inversions. The first part is dedicated to the exploitation of the various

modes, including higher Rayleigh and Love modes. The second part deals with the direct

inversion of spatial auto-correlation curves. Finally, inversion algorithms are also developed for

Rayleigh ellipticity.

5.1 Multimodal curves

For ambient vibration and active source experiments, higher Rayleigh modes are sometimes

observed. The presence of higher modes depends upon the depth and the type of acting sources

and upon the stratigraphy (Aki and Richards 2002, Xia et al. 2003, Socco and Strobbia 2004).

For the interpretation of ambient vibrations, there is absolutely no control over the source

distribution (space, time and energy content). The apparent velocity measured on vertical

components is not always due to body waves and Rayleigh fundamental mode but higher

modes may be recorded as well. The inversion of dispersion curves described in the preceding

chapters requires that the target curve used to calculate the misfit is effectively the fundamental

Rayleigh mode. In a similar way, when processing the horizontal components of ambient noise

measurements, the frequency-wavenumber method provides the apparent velocity of the most

energetic waves which may be of Love or Rayleigh type. Again, a correct identification of each

mode is necessary to proceed with a dispersion curve inversion.

Inverting the higher modes or Love modes may be promising issues to improve the obtained

velocity profiles. Xia et al. (2003) suggested that for the same wavelength, the inversion of

higher modes can ”see” deeper than the fundamental mode. Beaty et al. (2002) observed

an improvement of the inversion results when higher modes are included. The horizontal

components are high-pass filtered at a frequency lower than the resonance frequency unlike

the vertical components high-pass filtered around the resonance frequency (Scherbaum et al.

2003). The horizontal components still carry a sufficient signal to noise ratio to provide reliable

information on the wave propagation. Horizontal components contain a mixture of Love and

Rayleigh modes but some synthetic tests show that the Love wave may predominate (Bonnefoy-

89
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Claudet et al. 2004). The measurement of the Love curve at a frequency for which the Rayleigh

curve cannot be estimated extends the frequency range of the dispersion curve. Consequently,

with the same array deployment, the method can give reliable velocity profiles down to deeper

soil structures. Those two assertions are tested in detail with the developed inversion tool.

In a last section, attention is paid to the identification of higher modes. In most cases,

confusing two modes have a dramatic influence over the final results and usually ruins the

quality of the obtained velocity profiles. A technique has been developed to identify mode in

an automatic way.

Like in chapter 2, the reference model used in this section is described in figure 4.1.

5.1.1 Rayleigh higher modes

The fundamental mode and the first higher mode are considered here. The first higher mode is

inverted alone before being mixed with the fundamental mode. The fundamental mode alone

is studied in chapter 4 but it is inverted again to measure the correctness of the first higher

mode when only the fundamental mode is used as a constraint. The effect of including the first

higher mode with a narrow frequency band is finally estimated.

First higher mode alone

The first higher mode curve in figure 4.1(b) is resampled with 30 points and a constant frequency

step on a log scale between 2.75 and 20 Hz. This curve is inverted with the parameterization

described in table 4.3. The results are shown in figure 5.1. The fundamental mode is required
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Figure 5.1: Inversion of first higher mode alone: no prior information. (a) Resulting Vp profiles. (b) Resulting
Vs profiles. The black lines are the theoretical velocity profiles. (c) Dispersion curves corresponding to models
of figures (a) and (b). The grey curves are the calculated fundamental mode (lowest curves) and the first higher
mode (highest curves). The black dots are the theoretical dispersion curve used as the target curve during
inversion. The dotted line is the fundamental curve, not used for the misfit computation
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to calculate the first higher mode (section 3.1.5). This is why both modes are plotted in

figure 5.1(c), clearly visible with two families of curves, the highest velocity values being the

first higher mode. The high misfit obtained (compared to less than 0.02 in figure 4.6) is due

to the bad fit of the first higher mode between 6 and 12 Hz. When comparing the theoretical

fundamental curve (dotted black line) with the calculated fundamental mode (second family

of curves, the lowest), a clear gap is observed. In figure 5.1(b), almost no model is generated

with a depth of the first interface above 20 m. Contrary to fundamental mode, with this

parameterization, the inversion seems to be trapped in a secondary minimum of the parameter

space with a misfit around 0.1.
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Figure 5.2: Inversion of first higher mode alone: depth between 1 and 20 m/s. (a) Resulting Vp profiles. (b)
Resulting Vs profiles. The black lines are the theoretical velocity profiles. (c) Dispersion curves corresponding
to models of figures (a) and (b). The grey curves are the calculated fundamental mode (lowest curves) and the
first higher mode (highest curves). The black dots are the theoretical dispersion curve used as the target curve
during inversion. The dotted line is the fundamental curve, not used for the misfit computation.

To force the algorithm to explore other regions of the parameter space, the inversion is done

again with the interval for the first thickness reduced to [1, 20] m. The results are displayed in

figure 5.2 in the same way as in figure 5.1. A minimum misfit less than 0.01 is found with a

depth and a fundamental model that better fit the theoretical model. From 4 Hz and below,

the calculated fundamental curve does not follow the theoretical curve. This indicates that the

solution is not completely investigated by the neighbourhood algorithm and that the first higher

mode does not carry exactly the same information as the fundamental mode. Intensive inversion

runs would generate good fitting models with a fundamental mode around the theoretical curve

(not done here). In this case, we know that a better solution exists for depths lower than 20 m.

But even for real cases, this kind of operation is adviced to check the validity of the obtained

profiles.
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Fundamental mode alone

To estimate the quality of the information carried by each mode, it is necessary to visit again

the fundamental mode inversion. The inversion plotted in figure 4.6 is relaunched with the

simultaneous computation of the first higher mode. The results are shown in figure 5.3. Com-

paring figures 5.2(c) and 5.3(c), where all models with a misfit less than 0.1 are selected, the
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Figure 5.3: Inversion of the fundamental mode alone. (a) Resulting Vp profiles. (b) Resulting Vs profiles.
The black lines are the theoretical velocity profiles. (c) Dispersion curves corresponding to models of figures
(a) and (b). The grey curves are the calculated fundamental mode (lowest curves) and the first higher mode
(highest curves). The black dots are the theoretical dispersion curve used as the target curve during inversion.
The dotted line is the first higher mode, not used for the misfit computation.

deviations around the target curves (black dots) are similar. Obviously, the fundamental curve

offers a weaker constraint over the depth of the second layer than the inversion of the first

higher mode (figures 5.2(b) and 5.3(b)). However, the fundamental curve inversion does not

tolerate Vs greater than 3400 m/s just below 100 m, whereas for the first higher mode, many

models with Vs greater than 3200 m/s are found with a low misfit. In figure 5.3, the average

curve calculated for the first higher mode fits perfectly the theoretical curve for all frequencies

below 5 Hz. Between 5 and 15 Hz, the fundamental mode does not constrain the first higher

mode, in a similar way that the first higher mode cannot constrain the fundamental mode below

5 Hz (figure 5.2). From these observations, the fundamental curve seems to be necessary below

5 Hz and the first higher mode is mandatory above 5 Hz, other parts are carrying redundant

information. These threshold frequencies are valid only for this case and do not have a general

meaning.

Fundamental and first higher modes

To check these conclusions, the fundamental mode below 5 Hz and the first higher mode above

5 Hz are jointly inverted in figure 5.4. The black dots in figure 5.4(c) are the sample points
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Figure 5.4: Inversion of the fundamental and the first higher mode. (a) Resulting Vp profiles. (b) Resulting
Vs profiles. The black lines are the theoretical velocity profiles. (c) Dispersion curves corresponding to models
of figures (a) and (b). The grey curves are the calculated fundamental mode (lowest curves) and the first higher
mode (highest curves). The black dots are the theoretical dispersion curves used as the target curve during
inversion. The dotted lines are the fundamental and first higher mode not used for the misfit computation.

of the inverted dispersion curve. The thin dotted lines are the theoretical dispersion curves

of the unconstrained parts of the dispersion curves. These later ones do not show any special

spreading of the calculated dispersion curves, proving that they contain redundant information.

Layer Depth Vp Vs/Vp Density
Sediments 1 1 to 20 m 200 to 2,000 m/s 0.01 to 0.707 2 t/m3
Sediments 2 30 to 120 m +10 to 2,000 m/s 0.01 to 0.707 2 t/m3
Half-space – 4000 to 5,000 m/s 0.65 to 0.68 2 t/m3

Table 5.1: Parameterized model with a basement between 30 and 120 m. The ”+” sign stands for incremental
velocity: the parameter is the velocity gap between the first and the second layer.

Layer Depth Vp Vs/Vp Density
Sediments 1 1 to 15 m 200 to 2,000 m/s 0.01 to 0.707 2 t/m3
Sediments 2 15 to 30 m +10 to 2,000 m/s 0.01 to 0.707 2 t/m3
Half-space – 4000 to 5,000 m/s 0.65 to 0.68 2 t/m3

Table 5.2: Parameterized model with a basement between 15 and 30 m. The ”+” sign stands for incremental
velocity: the parameter is the velocity gap between the first and the second layer.

In a real case, the fundamental dispersion curve is rarely available down to 0.2 Hz when the

first peak of the ellipticity is at 5 Hz. Usually, one can expect to get a reliable dispersion curve

only below 5 Hz, which is redundant with the high frequency part of the first higher mode. As a

last example, the inversion of the narrow band dispersion curve shown in figure 4.7 is re-started

adding the first higher mode as a supplementary constraint. Like the fundamental mode, the

higher mode is rarely well defined at low frequencies. In this case, the first higher mode is
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supposed to be observed down to 9 Hz. Five runs are launched with the same parameterization

as the inversion of figure 4.7. This parameterization contains very little prior information as

reported by table 4.3. The majority of the models generated by the neighbourhood algorithm

inside this parameter space have a Vs below 1500 m/s down to 120 m which can give the illusion

that the inversion with the first high mode really offers a better constraint. But three other

inversions (two with the parameters of table 5.1 and one with table 5.2) are also run to force

the generation of models with a high Vs at shallow depths. The results displayed in figure 5.5

gather all the models of the eight runs. Comparing with figure 4.7, it clearly shows that the

first higher mode does not provide any special information about deeper layers, because it is

possible to find models with a very good misfit having almost any Vs values below 10 or 15 m.

The same composite dispersion curve is also inverted with a prior depth information like in

the inversion shown in figure 4.10 (not shown here). There is no significant improvement of the

solution induced by the use of the first higher mode.
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Figure 5.5: Inversion of the fundamental and the first higher mode: narrow band. (a) Resulting Vp profiles. (b)
Resulting Vs profiles. The black lines are the theoretical velocity profiles. (c) Dispersion curves corresponding
to models of figures (a) and (b). The grey curves are the calculated fundamental mode (lowest curves) and the
first higher mode (highest curves). The black dots are the theoretical dispersion curves used as the target curve
during inversion

Conclusions

In theory, combining the fundamental mode with the first higher mode results in Vs and Vp

profiles better defined over the whole soil column. The influence of the first higher mode in

the inversion is probably more complex than the conclusions of Xia et al. (2003). In our

tests, the first higher mode alone better constrains the velocity of the intermediate layer and

the depth of the basement than the fundamental mode even defined on a very wide frequency

range. However, the velocity of the half space basement is better retrieved with the fundamental

mode.
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In a real case, the limited range of the available dispersion curves ruins all positive aspects

of the inclusion of the first higher mode. Redundancy of both curves (above 5 Hz in this case)

just allows a cross-check of the results found with the fundamental curve alone.

5.1.2 Love and Rayleigh

From the above results, it can be seen that the measurement of the dispersion curve down to

low frequencies is the only way of improving the penetration depth of the method. This issue is

documented in chapter 2 for the the Rayleigh dispersion curve. An example of a joint dispersion

curve inversion with the low frequency being of Love type is shown. The Rayleigh fundamental

dispersion curve is supposed to be available from 5.5 to 15 Hz. The Love fundamental curve is

assumed to be observed between 1 and 5 Hz.

Run index itmax ns nr parameterization number of models
1 to 5 150 100 100 table 4.3 5*15100
5 to 10 100 100 50 table 4.3 5*10100

11 100 100 50 table 4.3 with
Vp1 ∈ [1600, 2000]
Vs1 ∈ [1040, 1414]

10100

12 100 100 50 table 4.3 with z2 ∈ [120, 160] 10100

Table 5.3: Inversion runs for Love-Rayleigh dispersion curves.

Twelve joint inversion processes are launched with distinct seeds and their results are gath-

ered in figure 5.6. The parameters of the neighbourhood algorithm and the parameterization

are described in table 5.3. The last two runs (11 and 12) are designed to force the search in

particular zones of the parameter space and to make sure that no model with a low misfit can

be found there. Comparing with figure 4.6, inverting without the low frequency part of the

Rayleigh dispersion does not alter the final result. Even more, the Love dispersion curve allows

the retrieval of Vp and Vs profiles with a lower uncertainty. Though the Love dispersion curve

has no direct relationship with the Vp profile, its inversion with the high frequency Rayleigh

dispersion curves improves the definition of Vp even for deep layers compared to Rayleigh alone

inversions (figure 4.7). This issue is out of the scope of this work.

In conclusion to this brief example, inversion of low frequency Love dispersion curve together

with higher frequency Rayleigh dispersion curve is a promising solution to deepen the penetra-

tion limits of an ambient vibration experiment. However, these interesting results assume that

the Love dispersion curve can be determined with a sufficient degree of confidence.

5.1.3 Higher mode identification

In sections 5.1.1 and 5.1.2, the modes are supposed to be correctly identified before proceeding

with the inversion. In many real cases when dealing with the vertical component, the apparent

dispersion curve with the lowest velocity is usually interpreted as the fundamental mode of

Rayleigh waves. For active source experiments measured at high frequencies (above 10 Hz),

higher modes may predominate (Gabriels et al. 1987, Forbriger 2003b, Xia et al. 2003, Socco
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Figure 5.6: Joint inversion of the Love and Rayleigh fundamental modes. (a) Resulting Vp profiles. (b)
Resulting Vs profiles. The black lines are the theoretical velocity profiles. (c) Rayleigh and (d) Love dispersion
curves corresponding to models of figures (a) and (b). The black dots are the theoretical dispersion curves used
as the target curve during inversion.

and Strobbia 2004). For ambient vibrations, which commonly yield dispersion curve at low

frequencies, higher modes are less studied but their presence is sometimes suspected. According

to the array resolution power, it is not always possible to separate modes and an intermediate

velocity may be observed. In this last case, no post-processing can be considered on the observed

apparent velocity values because there are too much parameters to play with (array geometry,

source distance, energy partition between co-existing modes, . . . ). A prior knowledge of the

ground structure or other geophysical acquisitions are necessary to detect anomalies on the

supposed fundamental dispersion curve. This case is not analysed in this section.

For other cases, a bad identification of modes may ruin all inversion results as demonstrated

by Zhang and Chan (2003) and by the following example. The same soil structure as in

section 4.2 is used here. In figure 4.1(b), the fundamental and the first higher modes for Rayleigh

waves are very close to each other around 9 Hz (osculation point). Depending on experimental
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conditions, it may be possible to select a branch below 9 Hz corresponding to fundamental mode

and another branch above 9 Hz following the first higher mode. This situation is depicted in

figure 5.7 where the observed apparent velocity is marked by black dots. At first glance, the

obtained curve may be interpreted as a single fundamental mode. This curve is inverted as

the fundamental Rayleigh mode with a prior information that the depth of the basement is
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Figure 5.7: Composite dispersion

curve. The black dots represent the dis-

persion as it can be observed. The grey

line are the theoretical dispersion curves

of the fundamental (plain line) and the

first higher (dotted line) modes.

situated between 95 and 105 m like in the inversion plotted

in figure 4.10. The results of five runs are summarized in

figure 5.8. The black lines in figures 5.8(a) and 5.8(b) are

the theoretical ground model. The difference is especially

strong on the first 20 metres where the velocity profiles are

usually well retrieved. There are more than 50% of bias in

the obtained results. For real sites, this phenomenon can

be detected only if external data or a prior knowledge are

also available. Indeed, there is no argument to reject the

interpretation of figure 5.8 from the dispersion curve itself.

If the results of the inversion with the fundamental

Rayleigh mode are far from the expected profiles, the in-

version with other Rayleigh modes can be tested with an

inversion algorithm we developed to automatically identify

higher modes. The inversion with this option requires only

one data curve and the assumption of the number modes

(nm) that are encountered by the data curve. For each

generated model and for each frequency sample of the data

curve, nm modes are simultaneously calculated. Compared to usual inversions, the misfit is

computed in a completely different way. The velocity difference (δvi = vdi − vci) at each fre-

quency between the data velocity and the theoretical Rayleigh velocities of each mode (up to

nm) is calculated. Only the minimum value is kept in the summation of equation 3.38. Virtu-

ally, the best fitting mode may be different for each frequency sample. However, these kinds

of oscillations are rarely observed due to the curve smoothness which naturally restricts the

number of mode changes to one or two on the available frequency range. This method effec-

tively adds one or two pseudo degrees of freedom to the inversion problem and it is sometimes

necessary to use more restricted parameterized model.

The inversion method is tested on the dispersion curve displayed in figure 5.7 with the

assumption that two modes may be present in the experimental curve. Tests with more than two

modes have not been carried out so far. The frequency range of the dispersion curve is similar

to the range used in figure 4.71 where it is clear that no information below 10 m is recovered.

The parameterization used in figure 4.10 (table 4.4) offers a slightly better constraint and is

chosen for the inversion with automatic mode identification. The results of the five inversion

runs (5*15100 models) are gathered in figure 5.9. In figure 5.9(c), two modes are plotted for

1The range is extended to 4 Hz in this case to get larger frequency range for the fundamental mode. Tests
with a limit at 5.5 Hz do not work because the velocity rise is not sufficiently marked.
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Figure 5.8: Inversion of the composite curve assuming fundamental mode. (a) Resulting Vp profiles. (b)
Resulting Vs profiles. The black lines are the theoretical velocity profiles. (c) Fundamental mode dispersion
curves corresponding to models of figures (a) and (b). The black dots are the composite dispersion curves used
as the target curve during inversion.
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Figure 5.9: Inversion of the composite curve with mode identification. (a) Resulting Vp profiles. (b) Resulting
Vs profiles. The black lines are the theoretical velocity profiles. (c) Fundamental and first higher mode dispersion
curves corresponding to models of figures (a) and (b). The black dots are the composite dispersion curves used
as the target curve during inversion.



5.1. MULTIMODAL CURVES 99

0 2500 5000
Vp (m/s)

0

20

40

60

80

100

D
ep

th
(m

)

0 1000 2000 3000
Vs (m/s)

0

20

40

60

80

100

D
ep

th
(m

)
4 6 8 10 20

Frequency (Hz)

400

800

1200

1600

2000

V
el

oc
ity

(m
/s

)
0 2500 5000

Vp (m/s)

0

20

40

60

80

100

D
ep

th
(m

)

0 1000 2000 3000
Vs (m/s)

0

20

40

60

80

100

D
ep

th
(m

)

4 6 8 10 20
Frequency (Hz)

400

800

1200

1600

2000

V
el

oc
ity

(m
/s

)

0 2500 5000
Vp (m/s)

0

20

40

60

80

100

D
ep

th
(m

)

0 1000 2000 3000
Vs (m/s)

0

20

40

60

80

100

D
ep

th
(m

)

4 6 8 10 20
Frequency (Hz)

400

800

1200

1600

2000

V
el

oc
ity

(m
/s

)

0 2500 5000
Vp (m/s)

0

20

40

60

80

100

D
ep

th
(m

)

0 1000 2000 3000
Vs (m/s)

0

20

40

60

80

100

D
ep

th
(m

)

4 6 8 10 20
Frequency (Hz)

400

800

1200

1600

2000

V
el

oc
ity

(m
/s

)

Misfit value
0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.10: Inversion of the composite curve with mode identification, splitting model families. (a), (d), (g),
and (j) Resulting Vp profiles. (b), (e), (h), and (k) Resulting Vs profiles. The black lines are the theoretical
velocity profiles. (c), (f), (i), and (l) Fundamental (below) and first higher (above) mode dispersion curves
corresponding to models of the other figures. The black dots are the composite dispersion curves used as the
target curve during inversion (see text for details).
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each model in figures 5.9(a) and 5.9(b).

Four families of curves with low misfit values can be distinguished. For clarity, these four

categories are shown individually in figure 5.10. In the first category (figures 5.10(a) to 5.10(c)),

the data curve is considered as being entirely the first higher mode. The minimum achieved

misfit is higher (0.055) than for other groups, but it does not automatically mean that models

are to be discarded. Valid arguments to reject them would be that superficial measurements

revealed a lower Vs or that a strong contrast between 40 and 60 m is not geologically admissible.

The second category is the same as our first hypothese (all data considered as fundamental

mode). Lower misfit values are obtained (0.025). Here again, complementary acquisitions

about the superficial Vs or depth criteria help to discard those models. In the third family of

models, the data curves is also likened to first higher mode but in a different way than the

first category. Here the difference with the theoretical model in terms of Vs and depth is more

subtile. The measurement of the dispersion curve on a larger frequency band, for instance if

Love modes can be observed, may help the interpretation. And finally in the last category,

a mode jump is noticed around 9 Hz and the velocity profiles correspond to the theoretical

ground model. The parameter space sampling is certainly not exhaustive for depth below

100 m. Further model generation can be conducted with a shallow depth restricted around

10 m to get a more complete and confirmed model uncertainty (not done here). Tests were

conducted with the parameterization of table 4.3 but nothing could be retrieved due to the

insufficient level of constraint.

This algorithm allows a great flexibility to scan the various modes possibly contained in the

observed dispersion curve. However, it adds at least one more degree of freedom, increasing

then the non-uniqueness of the problem. The prior information is here, probably more than

elsewhere, of prime importance to select the right model family.

Exactly the same technique has also been tested on synthetics to identify Love and Rayleigh

modes (not shown here).

5.2 Spatial auto-correlation

In section 3.3, it is shown that auto-correlation curves are theoretically calculated from the

dispersion curves. Classically, obtaining the Vs profile at one site is a two-stage processing:

derivation of the dispersion curve from the auto-correlation curves with a least-square scheme

(e.g. Bettig et al. 2001) and inversion of the dispersion curve to determine the Vs profile.

Recently, Asten et al. (2004) proposed to merge them into a single inversion based on least-

square optimisation (Herrmann 1994), allowing the determination of Vs(z) directly from the

auto-correlation curves. The approach proposed here is conceptually the same except that

we make use of the neighbourhood algorithm (section 2.3) for the inversion. It allows an

exploration of nearly all equivalent minima in terms of the misfit function and thus enables

additionally an improved uncertainty analysis when compared to classical linearized inversion

schemes (least-squares). Shapiro (1996) showed, that the solutions obtained from classical
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surface wave inversion schemes are too restrictive and uncertainties are not correctly estimated.

The text and the figures of this section are extracted from a paper we submitted to the

Bulletin of Seismological Society of America in October 2004. This is why the reference model

utilized here below differs from the one used in other sections.

5.2.1 Uniqueness of auto-correlation curves

The auto-correlation inversion has basically the same limits as the dispersion curve inversion, as

auto-correlation curves are calculated from dispersion curves: non-uniqueness, loss of resolution

with depth and equivalence for profiles with low velocity zones. As we plan to invert auto-

correlation curves to obtain Vs profiles, we first address the question of the relationship between

auto-correlation and dispersion curves. Obviously, equation (3.47) does not insure a one-to-

one relation between the two types of curves, as the arguments for J0(x) that satisfy equation

(3.47) can be numerous for small values of ρ(r, ω). However, equation (3.47) does not imply

any coupling of c(ω) with the auto-correlation at other frequencies than ω, meaning that the

inversion can be made independently frequency by frequency. Consequently, transforming auto-

correlation curves at frequency ω into their equivalent common dispersion curve is just a matter

of solving a system of equations of the same form as (3.47) (one equation by considered ring)

and solutions c(ω) are discrete numbers. If all the auto-correlation curves for the different rings

are consistent with each other, there is a minimum of one solution that satisfies all apertures.

From the discrete nature of the solutions and the number of rings likely to be considered, there

is little chance of having two distinct solutions for c(ω) that perfectly match all equations.

5.2.2 Synthetic model

The inversion method is first applied on a perfect synthetic model defined by a sedimentary

layer overlying a rocky basement. Vs and Vp values inside the two layers are plotted on figure

5.11(a) and 5.11(b) (black lines). We set up a 100 m aperture array with a quasi-circular shape

characteristics of which are given in figure 3.24(a). From the azimuth-distance plot of figure

3.24(b), we selected five distinct rings including 7 to 12 station pairs each, with an average of

ten. The limits of rings are arbitrary chosen. Parametric tests show that the final results are

very little dependent on the ring selection. We introduce uncertainties into the original model

assuming a normal distribution around the average model (black plain lines, figures 5.11(a)

and 5.11(b)) with the standard deviation shown by dotted lines in the same figure. Theoretical

auto-correlation ratios were computed for 5000 randomly generated models, keeping Poisson’s

ratio constant. Auto-correlation curves for the five rings are regularly distributed around the

ones computed for the average model (black dots of figures 5.11(d) to 5.11(h)).

5.2.3 Validation of auto-correlations

The measured auto-correlation curves do not always fit the shape of Bessel’s function and the

system of auto-correlation equations (of type (3.47) or (3.48)) may have no common solution for
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Figure 5.11: Reference model for auto-correlation inversion. (a) Vp profiles: input average model (plain line),
input standard deviations (dotted lines) and generated random models ranked by their auto-correlation misfit
(common grey scale). (b) Vs Profiles: same legend as for Vp. (c) Dispersion curves of random models for the
fundamental mode of Rayleigh. (d) to (h) Auto-correlation ratios for chosen rings plotted against frequency,
average and standard deviation for all samples (dots).

all array apertures. Feeding the inversion process with contradictory auto-correlation curves is

likely to give an uncontrolled average solution. If the contradiction comes from a defect in the

array response (e.g. too wide aperture for the considered wavelength) or in the noise content

(e.g. uncorrelated noise due to long distance between sensors for the considered frequency, or

insufficient energy level at low frequency), the probability of obtaining an unrealistic solution

is high. A selection of the relevant parts of the auto-correlation curves is thus necessary. The

problem is complex and there are no objective and commonly applicable rules. Without a prior

knowledge of the soil structure, the only reliable features are the array geometry and the auto-

correlation curves themselves. From the array geometry, some rough limits can be deduced

for a correct response in terms of wavenumber (Woods and Lintz 1973, Asten and Henstridge

1984), theoretically for the frequency-wavenumber processing only (section 1.1.1 on page 7).

On the other hand, from the auto-correlation curves for the different rings, we can test the

consistency of the system of equations, and discard the samples that are obviously out of the

general trend.

Practically, from a very large a priori in terms of apparent velocity (e.g. from 100 to 3000
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m/s), all possible solutions c(ω) of equation (3.47) or (3.48) are calculated independently for

each ring. For doing so, we define the function:

g(c, ω) = ρcalc(r, ω, c) − ρobs(r, ω) (5.1)

where, ω is the considered frequency band, ρcalc is calculated by equation (3.47) or (3.48), and

ρobs is the auto-correlation ratio calculated on the recorded signals. The roots of function g(c, ω)

are successively bracketed by a coarse grid search starting from the lowest velocity, and then

refined by an iterative scheme based on the Lagrange polynomial constructed by the Neville’s

method (Press et al. 1992). The same algorithm as for the internal computation of dispersion

curves is used (section 3.1.5). In a second stage, we construct a grid for each ring in the

frequency-slowness domain. The grid cells are filled with 1 if at least one solution exists within

the cell, with 0 in the contrary case. All the grids are stacked and the values in each cell give the
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Figure 5.12: Grids in frequency-slowness domain

representing the density of dispersion curve solutions.

(a) Solutions of equation (3.48) for the perfect auto-

correlation curves of figure 5.11. The theoretical dis-

persion curve is represented by a plain line.

number of consistent rings for a particular cou-

ple frequency-slowness. If the auto-correlation

curves are consistent, the cells where the den-

sity of solutions is maximum should delineate

the corresponding dispersion curve. From this

plot, we determine the minimum and the max-

imum slowness for each frequency, as well as

the minimum and the maximum wavenum-

ber for which we observe a focused dispersion

curve. To reduce the subjectivity of the se-

lection, zones where no clear consistency be-

tween auto-correlation curves is observed are

systematically rejected. Once the dispersion

curve limits are set, it is straightforward to

reject the contradictory data on the auto-

correlation curves. This procedure is tested on

the pure synthetic case (figure 5.11) where no

contradictory samples are present in the auto-

correlation curves. Figure 5.12 shows the re-

sulting frequency-slowness grid obtained after

seeking for all possible solutions. The disper-

sion curve can be entirely retrieved from the

auto-correlation curves between 1 and 10 Hz. When the auto-correlation value is less than

0.025 (arbitrary threshold to avoid an infinite number of solutions), no solution is calculated.

This is why, for high frequency, the large apertures provide no points and hence the density

vanishes to one or two occurrences only.



104 CHAPTER 5. ENHANCED INVERSIONS

5.2.4 Inversion

A two-layer model is considered with the parameter ranges specified in table 5.4. In the shallow

layer, the velocity can increase with a power law relation, and the parameters are four (Vp, Vs/Vp,

the thickness and the Vp increase between the top and the bottom). The constant velocity layer

corresponding to the true model is a particular realization of the parameterization. The bedrock

parameters are two (Vp increase, and Vs/Vp). The neighbourhood algorithm has been started

using 3 independent runs with distinct random seeds, generating a total of 30,000 models.

Among them about 13,500 have a misfit less than 1 and are plotted in figure 5.13. The lowest

misfit is 0.03.

Layer Thickness Vp Vs/Vp Density Vp variation
Sediments 10 to 50 m 200 to 2,000 m/s 0.01 to 0.707 2 t/m3 10 to 1,000 m/s
Half-space – +10 to 3,000 m/s 0.01 to 0.707 2 t/m3 –

Table 5.4: Parameters for auto-correlation inversion. The “+” sign stands for incremental velocity: the
parameter is the velocity gap between the first and the second layer. The power law gradient across the first
layer is represented by a stack of 5 sub-layers. The value of the parameter is the total velocity variation across
the layer.

The Vs and Vp models resulting from the auto-correlation inversion are plotted in figures

5.13(a) and 5.13(b) with their misfit value. On these figures, is drawn the theoretical model of

figure 5.11. Most of the solutions with a misfit lower than 0.4 are able to explain in a consistent

way the auto-correlation data given their standard deviations (figures 5.13(a) and 5.13(b)). In

figure 5.13(c) are plotted the corresponding dispersion curves. The Vs profile (figure 5.13(b))

is very well constrained from 6 to 20 metres deep. The very superficial layers (less than 6 m)

are at a depth lower than one third of the minimum wave length (20 m) and Vs values are

less constrained, resulting from the limited bandwidth at high frequency. Below 35 metre, Vs

values are well retrieved due to the wide low frequency range of the auto-correlation curves. In

real data, this well constrained velocity in the bedrock is usually missing due to the site high-

pass filter of the Rayleigh waves below the fundamental frequency (Scherbaum et al. 2003,

chapter 6). The dispersion curves computed for the best fitting models compare very well with

the theoretical one (figures 5.11(c) and 5.13(c)). The resolution is relatively poor between 22

m and 35 m: a velocity jump at 22 metres gives a misfit value equivalent to the one for a

contrast at 35 metres. Other inversion tests (not presented here) have shown that this lack of

resolution results from the uncertainties considered on the auto-correlation data. However, the

lowest misfit model correctly finds an interface around 25 m depth.

Usually, Vp has a low influence on the dispersion curve, and hence on the auto-correlation

curves. Boore and Toksöz (1969) proved for a five-layer model that the influence of Vp on the

dispersion curve is about one tenth the influence of Vs. However, for low Poisson’s ratios, Vp

has more influence. In this latter situation, the final Vs profile depends upon the correctness of

the Vp profile. In classical iterative inversions (least-square scheme), Vs/Vp or Poisson’s ratio is

kept constant because the small influence of Vp on the auto-correlation curves generally leads

to unrealistic velocities. For the neighbourhood algorithm inversions, the parameterization is
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Figure 5.13: Inversion of the auto-correlation curves. (a) Vp profiles: true average model (plain line), true
standard deviations (dotted lines) and inverted models ranked by their auto-correlation misfit (common grey
scale). (b) Vs Profiles: same legend as for Vp. (c) Dispersion curves of generated models. (d) to (h) Auto-
correlation ratios for chosen rings plotted against frequency, average and standard deviation of data points to
be fitted (dots).

easily adjusted to fit the physical limits of Vp and the prior information, for instance, about

the superficial values of Vp. When no information is available about Vp, it is still used as a

parameter with large prior intervals to prevent from altering the final result with unreliable

assumptions. For this inversion test, we assumed that no prior information exists on Vp. As the

Poisson’s ratio for the theoretical model is 0.49, the compressional-wave velocity (Vp) profile is

badly recovered. Equivalent models are found for the whole prior Vp range (from 200 to 2000

m/s in the upper layer).
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5.3 Ellipticity inversion
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Figure 5.14: Inversion of the ellipticity alone

showing the trade-off between the depth of the

velocity contrast and Vs.

The principles and the solutions developed for the in-

version of the Rayleigh ellipticity are discussed in sec-

tion 3.2. The ellipticity shown in figure 4.1(d) is first

inverted alone with a simple model made of one layer

overlaying an infinite half-space. The shape of the el-

lipticity curves is not inverted but only the frequency

of peak, which is exactly found at 5.63 Hz. The sec-

ondary peak at 3 Hz is not considered here. It is not

possible to retrieve a complete ground structure only

from the frequency of the ellipticity peak. Hence, a

model with only two parameters (thickness and Vs0)

is used in the inversion, detailed in table 5.5. The

Vs/Vp value in the half space is fixed to ensure a con-

stant Vs of 1000 m/s. Five runs are launched with

ten iterations each generating a total of 5500 models.

The minimum misfit achieved is 0, because only one

single frequency is fit with a precision of 10−3 Hz. The

results are shown in figure 5.14. A clear relationship

between the thickness and Vs0 is found corroborating

the conclusions of Scherbaum et al. (2003) about the inversion of the frequency of the ellipticity

peak for a two-layer model. The theoretical model has a z1 of 10 m and Vs0 is 200 m/s.

Layer Thickness Vp Vs/Vp Density
Sediments 1 to 50 m 375 m/s 0.01 to 0.707 2 t/m3
Half-space – 1750 m/s 0.57143 2 t/m3

Table 5.5: Parameters for ellipticity alone inversion.

The last example confirmed that the frequency of the ellipticity peak contains pertinent

information about the thickness and the shear velocity of the first layer. The ellipticity target

is then added to a usual dispersion curve inversion to test its ability to improve the final solution.

The case of a narrow frequency band and a two-layer parameterization inverted in figure 4.5

is utilized again. As detailed in section 3.2, the misfit is calculated by a weighted sum of the

dispersion and the ellipticity misfits. 10 and 90 % weights were chosen for the dispersion and

the ellipticity misfits, respectively. This ensures that nearly all generated model are complying

with an ellipticity peak at 5.63 Hz. Consequently, to achieve a comparable good fit of the

dispersion curve as in figure 4.5, the misfit scale is divided by 10. Five runs are launched with

the parameters described in table 4.2. To make sure that the parameter space is sufficiently

sampled in terms of z1 (depth of the top of the half space), two more inversion processes are

started with the depth restricted to [8, 10] m and [11, 14] m, respectively. The ensemble of all

models with a misfit less than 0.01 is plotted in figure 5.15.
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Figure 5.15: Join inversion of the dispersion curve and the ellipticity peak. (a) Resulting Vp profiles. (b)
Resulting Vs profiles. The black lines are the theoretical velocity profiles. (c) Dispersion curves corresponding
to models of figures (a) and (b). The black dots are the theoretical dispersion curves used as the target curve
during inversion. (d) Ellipticity curves calculated for models of figures (a) and (b). The black dots are the
theoretical ellipticity curve but only the frequency of the main peak is used as the inversion target.

Compared to figure 4.5, the posterior error obtained for the depth of the basement interface

is greatly reduced. According to the level of confidence put into the dispersion curve, the depth

is known with a one-metre precision whereas the uncertainty in figure 4.5 is much greater.

However the velocity in deeper layer is not retrieved as in the first inversion. Tests were

also conducted with a three-layer parameterization but no significant improvement has been

observed. Other inversions could have been started with the low frequency secondary peak

appearing in figure 4.1(d) at 3 Hz, but there are few chances for this peak to be detected with

a real experiment.
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Chapter 6

Test cases

In the preceding chapters, a flexible and powerful algorithm is developed for the inversion of

dispersion curves. Its capabilities have been proved in the case of noiseless data curves. In this

chapter, the dispersion curves (or the auto-correlation curves) are retrieved from a synthetic

and a real wavefield with the techniques described in chapter 1 and they are inverted. Even for

noisy observables, the inversion tool reveals itself as an efficient way to infer the soil structure

together with its global uncertainty.

A special attention is paid to the interpretation of multiple array geometries. The advantages

and the drawbacks of each method and each configuration are exploited to developed robust

guidelines for the interpretation of real measurements.

6.1 Synthetic ambient vibrations

In this section, the recorded signals are simulated with the method developed by Hisada (1994).

The theoretical model is described hereafter. Then, the signals are processed with the methods

detailed in chapter 1.

6.1.1 Model description

The synthetic ground model is composed of a soil layer with a thickness of 25 m overlying

an infinite bedrock. The properties of each layer are specified in table 6.1. The theoretical

Thickness Vp Vs Density Qp Qs

25 m 1350 m/s 200 m/s 1.9 t/m3 50 25
– 2000 m/s 1000 m/s 2.5 t/m3 100 50

Table 6.1: Properties of the reference model.

Rayleigh dispersion curves (the fundamental and the first four higher modes in the case of an

elastic media) for this model are shown in figure 6.1(a) between 1 and 15 Hz. For frequencies

below 15 Hz, only the first five modes are present and appear to be well separated in terms

of velocity. Figure 6.1(b) shows the fundamental ellipticity and the SH transfer function. The

109
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fundamental resonance frequency is 2 Hz while the peak of the fundamental ellipticity is at

1.9 Hz. This frequency difference, recently studied by Malischewsky and Scherbaum (2004),

is mainly influenced by the magnitude of the velocity contrast between the sediments and the

bedrock.
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Figure 6.1: Theoretical model for synthetic ambient vibrations. (a) Dispersion curves for Rayleigh modes
calculated with the synthetic model: fundamental model (thick plain line), first (thick dashed line), second
(thin plain line), third (thin dashed line), and fourth higher mode (thin dotted line). Other modes do not exist
in the plotted range. (b) Theoretical SH transfer function for the synthetic model (plain line) and fundamental
Rayleigh ellipticity curve (dotted line).
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Figure 6.2: Spectral curves of the central station of array A to C. The plain line is the average and the dashed
lines are located at one standard deviation. (a) Amplitude spectrum of the vertical component. (b) Amplitude
spectrum of one horizontal component. (c) Spectral ratio Horizontal to Vertical (H/V). Grey bands indicate
the average and standard deviation of the frequency peak values observed for each individual time window.

Synthetic ambient vibrations have been computed during 6 minutes using the method pro-

posed by Hisada (1994 and 1995), and Bonnefoy-Claudet et al. (2004) which is valid for a

one-dimensional model with sources and receivers placed at any depth. This dataset includes

333 source points randomly distributed from 140 to 750 m from the central receiver. Sources

are punctual forces with delta-like functions of random amplitudes and directions. All types of

waves existing in such media are modelled generating a wave field containing body, Love and

Rayleigh waves. The frequency spectrum of generated waves is limited to 15 Hz in order to

reduce CPU time. The spectra of the vertical (V) and one horizontal (H) component of the
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central station is shown in figure 6.2(a) and 6.2(b), as well as the H over V ratio (figure 6.2(c)).

The frequency of the H/V peak (2 Hz) matches the resonance frequency of the soft layer (figure

6.1(b)). The Fourier spectra show that the energy of the vertical component vanishes in the

vicinity of and below the fundamental frequency as reported by Scherbaum et al. (2003), while

the energy on the horizontal component decreases below 1.5 Hz.
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Figure 6.3: Array geometries and their f-k responses. (a), (d) and (g) Geometries of arrays for arrays A, B,
and C, respectively. (b), (e) and (h) Their corresponding theoretical frequency-wavenumber responses. The
circles correspond to the chosen wavenumber limits detailed in table 6.2. (c), (f) and (i) Sections across several
azimuths for the theoretical frequency-wavenumber grids of arrays A, B, and C, respectively. The black curve
is oriented along the line drawn in figures (b), (e) and (h).

On this model we set up three arrays (labelled A, B and C) the geometries of which are

plotted in figures 6.3(a), 6.3(c) and 6.3(e), respectively. Array A is composed of nine sensors

roughly distributed around a central sensor, with an approximate aperture of 25 metres. Array

B is made of three triangles approximately rotated by 40◦ and with increasing aperture up

to 90 metres. Finally, array C is made of nine sensors roughly distributed around a central

sensor, with an approximate aperture of 100 metres. Theoretical f-k responses (section 1.1.1 on
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Array name Min. dist. Max. dist. kmin kmax fmin fmax

A 8 m 25 m 0.095 1.50 4.4 ≥15.0
B 13 m 87 m 0.037 0.495 3.25 7.6
C 34 m 99 m 0.024 0.39 3.0 7.2

Table 6.2: Properties of the array geometries. For each array the minimum and maximum distance between
sensors. The minimum and maximum wavenumbers deduced from the theoretical frequency-wavenumber re-
sponses in figures 6.3(b), 6.3(e) and 6.3(h). Also the minimum and maximum frequencies corresponding to
those wavenumbers (Hz).

page 7) for arrays A, B, and C are shown in figures 6.3(b), 6.3(d) and 6.3(f), respectively. The

resolution and aliasing limits deduced from Woods and Lintz (1973) and Asten and Henstridge

(1984) criteria are marked by circles and are summarized in table 6.2. Sections are made across

each of them along several azimuths (628) and they are plotted by grey curves in figures 6.3(c),

6.3(e) and 6.3(g). The bold black curves correspond to the minimum aliasing azimuths which

are marked by black lines in figures 6.3(b), (d) and (f). From equation (1.2), a wave travelling

at kmax appears in the semblance map with the main peak right on the aliasing limit and the

lateral aliasing peaks greater than 0.5 are located on a circle crossing the origin. In the case

of a complex wavefield with waves travelling in several directions, there are lot of chances to

confuse the true peak with sums of secondary aliasing peaks that do not correspond to the

correct apparent velocity. Hence, a safe approach would be to limit the valid range to kmax/2,

which is illustrated by the results of the next sections.

6.1.2 Single source wavefield

The f-k method is first applied to a wavefield produced by a single source of the afore-

mentioned dataset, situated at about 650 m (310◦ counted clockwise from the North or Y
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Figure 6.4: Single source wavefield measured by

the vertical sensors of array B.

axis) from the centre of arrays A, B and C. The

source is punctual with a force vector oriented

along direction 293◦ and inclined at 50◦ from the

vertical axis. From its orientation and its posi-

tion far from the arrays, Rayleigh waves are sup-

posed to be mainly recorded. The signals com-

puted at the ten receivers of array B are shown

in figure 6.4. Their energy is spread over a 6 sec-

ond period for a total calculated duration of 360

seconds.

The array response is calculated for single

windows of varying durations: 20 s, 6 s, and 3 s,

all centred around the most energetic part of the

signal. The velocity at the semblance maximum

is plot for all frequency bands in figures 6.5(a) to 6.5(c), for the duration 20 s, 6 s and 3 s,

respectively. The theoretical dispersion curves (the fundamental and the first three higher
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modes) are plotted on the same graphs for comparison. The validity curves are drawn at con-

stant kmin (plain lines), kmax/2(dotted lines) and kmax(dashed lines). For the long time window,

the velocity determination is nearly perfect for the whole frequency range except below 2 Hz,

which corresponds to 40 cycles (20 s times 2 Hz). When decreasing the time length of the

processed signal, the dispersion curve quality is degrading at low frequency. We define a mini-

mum threshold frequency in each case indicating where the calculated dispersion curve leaves

the theoretical curve. For the six-second window this threshold frequency is around 2.5 Hz (15

cycles) and around 5 Hz (15 cycles) for the three-second case. Comparing to the response of

the arrays A and C, figures 6.6(a) and 6.6(b), respectively (six-second time window), it can

be observed that the limit of 2.5 Hz is independent of the array aperture or array geometry.

Array A provides a correct velocity estimation, though being far outside the valid wavenumber

range. This frequency limit is linked to the energy content of the vertical spectrum shown in

figure 6.2(a) as reported by Scherbaum et al. (2003).
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Figure 6.5: Frequency-wavenumber analysis for array B with various time windows: (a) 20 s., (b) 6 s., and
(c) 3 s. For each plot, the thin lines are the theoretical dispersion curves for the original ground model (first
modal curves of figure 6.1). The three exponential curves represent constant wavenumber curves values of which
are deduced from theoretical frequency-wavenumber response (figure 6.3): minimum (continuous line), half the
maximum (dots) and maximum wavenumber (dashed).

The calculated curves in figures 6.5(b), 6.5(c), 6.6(a) and 6.6(b) show at least two major

defects: one located at 4 Hz where the velocity increase is not retrieved and the other between

6 and 9 Hz, especially obvious for array A. The first one is not present on the 20 s. results

(figure 6.5(a)), proving that the choice of a long enough window is crucial to correctly process

the signals. The second defect may be investigated by examining the responses of arrays A and

B in the plane (kx, ky) (figures 6.7(a) and 6.7(b)). Below 6 Hz (not shown here) the shape of

the array response is quite similar to the theoretical response, supporting the assumption of a

single dominant surface wave. Above 6 Hz, the general shape is changing with the apparition

of a secondary main peak at higher velocity, as shown by figure 6.7 (calculated at 6.5 Hz).

Because of its relative low resolution limit ([kmin]B < [kmin]A), array A cannot distinguish the

two peaks and the exact position of the fundamental peak is shifted erroneously towards a

higher velocity. This explains the velocity bump on the dispersion curve of figure 6.6(a).

The signal processing shows that the simulated vibrations are mostly composed of surface

wave which dispersion curve is perfectly retrieved in figure 6.5(a) above 2.5 Hz. Waves travel-
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Figure 6.6: Frequency-wavenumber analysis for ar-
rays A and C in figures (a) and (b), respectively. The
window length is 6 seconds.
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Figure 6.7: Array responses for arrays A and B in
figures (a) and (b), respectively, calculated at 6.5 Hz.

ling at a higher velocity are detected between 6 and 9 Hz (figures 6.6(a) and 6.7(b)), probably

corresponding to the first higher mode. Comparison of arrays with different resolving power

allows the rejection of non trusted samples. The parameters of the signal processing, particu-

larly the choice of a too short time window, may introduce undesirable effect on the dispersion

curve construction. The results obtained with a single source suggest the use of windows of at

least 15 to 40 periods. In the following, a complex wavefield is analysed by the means of three

processing techniques (frequency-wavenumber, high resolution and auto-correlation methods).

6.1.3 Frequency-wavenumber method

The contributions of 333 sources similar to the one analysed in the last section are summed

together to simulate ambient vibrations. To estimate the uncertainty on the apparent velocity

determination, the whole signals are split in several smaller time windows for which the array

responses are computed. For each time window, the velocity of the semblance peak is searched

for wavenumbers below 1.5 rad/m and for velocities between 150 and 2000 m/s. From a coarse

griding in the wavenumber plane, the vector (kx, ky) of the highest peak is iteratively refined

to an arbitrary small precision. Thus, for each frequency band, an histogram of the velocities

at the observed maxima is constructed (e.g. figure 6.8(a) for array C and 10 cycles). The

areas below the histograms are normalized to one in the slowness domain, explaining the high

values for the probability density functions. The curves in figure 6.8(c) are sections across the

histograms of figures 6.8(a) and 6.8(b) at 3 Hz.

The influence of the window length is first checked by calculating the histograms for time

windows containing 10 and 50 cycles (figures 6.8(a) and 6.8(b), respectively) for array C. The

theoretical dispersion curves are represented by the three thin plain lines. The three exponential

curves (validity curves) represent constant wavenumber curves values of which correspond to the

deduced kmin (continuous line) and kmax (dashed line). The dotted line is situated at kmax/2.

In figure 6.8(a), the average deviates from the theoretical dispersion curve with a constant bias

of 50 or 100 m/s towards lower velocity, whereas all the velocity estimates are closer to the
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Figure 6.8: Comparison of frequency-wavenumber analysis for array C, influence of the time window length.
(a) Histograms of velocities with a maximum f semblance obtained with time windows of 10 cycles. (b) Same
processing with time windows of 50 cycles. (c) Cross section at 3 Hz, of the histograms of figures (a) and (b),
shown by dotted and plain lines, respectively. The curves are of the same types as in figure 6.5.

theoretical curve and the standard deviations are much smaller for the 50-cycle case (figure

6.8(b)). Both cases are calculated with the same duration of signals (six minutes), resulting

in five times more windows in the 10-cycle case. To test the robustness of the statistics, one

minute and 12 seconds of signals are also processed with time windows of 10 cycles, containing

the same number of time windows as in the 50-cycle case calculated with the six minutes of

signals. The obtained histograms are the same as in figure 6.8(a). Hence, with short time

windows, increasing the number of samples neither reduces the gap to the theoretical curve nor

the size of resulting error bars.

A similar processing is applied to the signals of arrays A and B (six minutes of signals and

time windows of 50 cycles). The velocity histograms of arrays A, B and C can be compared in

figures 6.9(a), 6.9(b) and 6.8(b), respectively. The validity curves of constant wavenumber are

drawn in the same way as in figure 6.8. For all arrays, kmin is clearly linked to the point where

the velocity estimates strongly deviate from the theoretical dispersion curve shown with the thin

black lines. In figure 6.8(b), bad estimations of velocity due to aliasing take place effectively

between kmax/2 and kmax. A similar conclusion could be drawn for array B, where errors

towards low velocity slightly increase above kmax/2. Due to the limited available frequency

range, the aliasing effect cannot be observed for array A. Between the limits kmin and kmax/2,

arrays B and C exhibit correct velocity estimates. For array A, the measured velocity is slightly

above the theoretical Rayleigh velocity with a velocity bump between 6 and 9 Hz similar to the
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one of figure 6.6(a). For each array, an average and a standard deviation is calculated between

kmin and kmax/2 based on the histograms of figures 6.8(b) and 6.9. The three curves are

averaged taking into account the respective weights (number of time windows) to construct the

final dispersion curve plotted in figure 6.10. The measured dispersion is reliable for frequencies

above 3 Hz. This limit is linked to the array sizes but also to the dramatic decrease of the noise

vertical component amplitude close to the fundamental resonance frequency (2 Hz).
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Figure 6.9: Results of the frequency-wavenumber
method applied to arrays A (a) and B (b) with time
windows including 50 cycles as in figure 6.8(b). The
histograms are of the same type as at figure 6.5, the
curves as well. Wavenumber limits correspond to
each array geometry.
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Figure 6.10: Average and standard deviations (ver-
tical bars) of apparent dispersion curve from arrays
A, B and C. The thin lines are the theoretical dis-
persion curves for the original ground model.

The obtained dispersion curve is inverted with five distinct runs of the neighbourhood

algorithm, generating a total of 50,000 models. The parameterized model consists of a sediment

layer the wave velocity of which increases with depth according to a power law, and a half-space

at the base. The parameters are six: Vp and Vs/Vp in the two layers, the layer thickness and

the Vp increase between the top and the bottom of the sediment layer. Figure 6.11(a) and

6.11(b) show the velocity profiles obtained for Vp and Vs, respectively, for all models fitting the

dispersion curve with a misfit lower than one. The misfit function is defined by equation (3.38).

The dispersion curves corresponding to the misfit threshold of one are plotted in figure 6.11(c).

Dispersion curve inversion leads to a good definition of the Vs profile for the first 25 m. Below

this depth, a large range of velocity values may explain the measured dispersion curve, due to
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the lack of information at low frequency. Vp profile is very poorly constrained by the inversion,

as Vp values in the layers have very little influence on the dispersion curve for high Poisson’s

ratio values (section 3.1.8).
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Figure 6.11: Results from inversion of the dispersion curve obtained with the frequency-wavenumber method.
(a) Vp, (b) Vs of generated models and (c) corresponding dispersion curves. The dots and error bars represent
the experimental dispersion curves to which the calculated dispersion curves are compared. The black lines of
figures (a) and (b) are the velocity profiles of the true model.

6.1.4 High resolution method

For the three arrays A, B, and C, the dispersion curves have been calculated by searching the

maximum of the high-resolution frequency wavenumber estimator defined by Capon (1969) and

Ohrnberger et al. (2004a). The estimator depends upon the cross spectral matrix averaged over

the 6 minutes of available signals. The results are shown in figures 6.12(a) to 6.12(c), for arrays

Array name kmin kmax fmin fmax

A 0.069 – 3.9 ≥15.0

B 0.023 0.46 2.4 14.2

C 0.023 0.22 2.4 6.9

Table 6.3: For each array, the minimum and maxi-

mum wavenumbers deduced from the comparison of

the high resolution results to the theoretical disper-

sion curve (rad/m). Also are given the minimum

and maximum frequencies corresponding to those

wavenumbers (Hz).

A, B, and C, respectively. The limits kmin and

kmax/2 validated for the f-k method are shown

in grey. Theoretically, the resolving power of

the high-resolution method should be better than

the f-k method, and estimates of velocity may

be reliable even outside those restrictive limits.

From the observation of the stability of the high-

resolution results and the comparison with the

theoretical dispersion curve, we define apparent

limits of the high-resolution valid for this partic-

ular case (table 6.3). This task is not possible for

a real experiment. From a careful examination of

figures 6.9 and 6.12, the high resolution method provides correct answers below kmin, extending

the frequency range by approximately 0.5 Hz. The poor resolution of array A between 6 and
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9 Hz is not significantly improved by the high resolution approach. At high frequency, array

B gives nearly perfect results up to its kmax, in contrast with array C which shows a lot of

instabilities above kmax/2. After selecting the points between the validity curves, an average

dispersion curve is calculated to feed the inversion algorithm.
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Figure 6.12: Results of the high resolution frequency-wavenumber method applied to arrays A (a), B (b)
and C (c). The grey exponential curves are the minimum and half maximum wavenumber limits deduced
from theoretical array response. The black lines with dots obtained from computations are compared to the
theoretical dispersion curves (thin plain lines).
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Figure 6.13: Results from inversion of the dispersion curve obtained with the high-resolution frequency
wavenumber method. (a) Vp, (b) Vs of generated models and (c) corresponding dispersion curves. The dots
represent the experimental dispersion curves to which the calculated dispersion curves are compared. The black
lines of figures (a) and (b) are the velocity profiles of the true model.

We performed exactly the same inversion processes as for the f-k results (figure 6.13. As we

do not have error estimation on the dispersion curve, the model selection is based on the misfit

threshold (0.075) for which the dispersion curve uncertainty includes the data scattering. As

for f-k method, the Vs profile up to the major impedance contrast can be determined. Vp over

the whole column and Vs below 25 m are not defined by analysing the vertical component of
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the ambient vibrations. The slightly extended frequency range compared to f-k method does

not induce a significant difference in the inverted Vs profiles.

6.1.5 Spatial auto-correlation method

The signals simulated for the three arrays A, B and C are analysed using the spatial auto-

correlation method described in section 5.2. The azimuths and the distances between all couples

of stations are shown in figure 6.15. The pairs of grey circles are the selected rings for the spatial

auto-correlation computation. Distances are summarized in table 6.4.

Array name Min. radius Max. radius Number of pairs
A 7.8 9.4 9
A 12.1 13.2 9
A 15.3 17.0 9
A 21.2 22.5 9
A 24.4 25.3 9
B 12.5 18.0 6
B 22.0 26.3 9
B 34.7 43.3 12
B 49.1 63.8 12
B 73.8 87.3 6
C 33.5 35.0 9
C 48.4 54 9
C 63.9 65.1 9
C 85.6 87.3 9
C 97.5 99.4 9

Table 6.4: Distance limits for the selected rings for arrays A, B and C. The last column is the number of
station couples included in each ring. Distances are expressed in metres.

As in the f-k method (section 6.1.3), the choice of the window length for calculating the

auto-correlations is crucial. An example of its influence is presented hereafter. The average

auto-correlation ratios are calculated with equation 1.11 for pairs of stations separated by

distances between 30 and 40 m. In figure 6.14, the auto-correlation curves are plotted for

various window lengths, counted in number of cycles of the central considered frequency (ω0):

10, 25 and 50 (from light to dark grey, respectively). For the three curves, the average values

are close to the true auto-correlation curve (black thick line) in the range 3.5 to 5.5 Hz. Below

3.5 Hz, the 10 cycle auto-correlation curve deviates from the correct function, while the two

other curves (25 and 50 cycles) are close to it for frequency as low as 2.5 Hz. This discrepancy

for short windows is probably due to a lack of source azimuth coverage (Asten et al. 2004),

as the number of acting random sources is inversely proportional to the considered duration.

Another explanation might be that the spectral estimates are more influenced by unavoidable

side effects generated by cutting signals into time windows. Also, long time window curves are

smoother than short ones and exhibit smaller standard deviations (figure 6.14). During this

thesis, the 25 cycle time windows are kept for the computation of auto-correlation curves.
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Figure 6.14: Influence of time window lengths on
auto-correlation curves (average and standard devi-
ations): 10 cycles (light grey), 25 cycles (medium
grey) and 50 cycles (dark grey). The thick black line
represent the theoretical auto-correlation curve.

Array name kmin kmax fmin fmax

A 0.015 – 1.9 ≥15.0
B 0.012 0.4 1.7 13.4
C 0.011 – 1.5 ≥15.0

Table 6.5: For each array the minimum and max-
imum wavenumbers deduced from the solution den-
sity grid (figure 6.17). Also the minimum and maxi-
mum frequencies corresponding to the selected sam-
ples (Hz).

A total of 15 auto-correlation ratio curves (five by array) are calculated for time windows

of 25 cycles. Only one curve per array is shown in figure 6.16 with grey dots and grey errors

bars. The consistency of all 15 auto-correlation curves is checked on dispersion curves in figure

6.17(a) to 6.17(c), for arrays A to C, respectively.

The fifteen auto-correlation curves with the selected samples are inverted with five indepen-

dent runs keeping the same parameterization as for the two preceding methods. The results

are shown in figure 6.18. Only three auto-correlation curves among the fifteen are shown in

figure 6.18(d) to 6.18(f). A good agreement is found between the calculated curves and the

observed auto-correlations (black dots and their error bars) even below 2 Hz. The theoreti-

cal dispersion curve is drawn for comparison in figure 6.18(c). The auto-correlation method

correctly retrieves the dispersion curve for all frequencies above 2.5 Hz. For lower frequency,

a systematic bias is observed in figure 6.18(c). Comparing figures 6.11(b) and 6.13(b), the

inversion of auto-correlation offers a little more constraint on Vs at the base of the sediment

layer. Vp over the whole column and Vs below the major impedance contrast is not resolved as

for the other methods.

6.1.6 Discussion and Conclusions

Three processing methods have been tested to retrieve the dispersion properties (dispersion

curves or auto-correlation curves) on a two-layer model from simulated noise array measure-

ments: the f-k method, the high-resolution f-k method and the spectral auto-correlation tech-

nique. Only the vertical components are processed and the dispersion (or auto-correlation)

curves are inverted to obtain the Vs profile. The first conclusion is that several array apertures

have to be used to construct the dispersion (auto-correlation) curves in the appropriate fre-

quency range. From the inverted velocity profile point of view, all three methods have almost

the same efficiency for this synthetic case. The Vs profile is correctly retrieved down to about
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Figure 6.15: Azimuth-inter-distance plot: each dot
represent one couple of stations. The pairs of grey
circles show the limits of the chosen rings. (a) Array
A, (b) array B, and (c) array C.
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Figure 6.16: Examples of auto-correlation curves
obtained for (a) array A, (b) array B, and (c) array
C. The black dots and error bars are the samples
selected according to criteria of figure 6.17.

2 4 6 8
Frequency (Hz)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

S
lo

w
ne

ss
(s

/m
)

2 4 6 8
Frequency (Hz)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

S
lo

w
ne

ss
(s

/m
)

2 4 6 8
Frequency (Hz)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

S
lo

w
ne

ss
(s

/m
)

Number of rings with a solution inside cell
0.5 1.5 2.5 3.5

(a) (b) (c)

Figure 6.17: (a) to (c) grids in frequency-slowness domain representing the density of dispersion curve solutions
for arrays A to C, respectively. The plain and the dotted lines are the wavenumber limits deduced from the
solution density grids (if any). The dashed and the dot-dashed curves are the wavenumber limits of the apparent
dispersion curve or the limits of the area with a high density of solutions.
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Figure 6.18: Inversion of the selected 15 auto-correlation curves. Only three of them are presented here. (a)
Vp, (b) Vs profiles of generated models. The black lines of figures are the velocity profiles of the true model. (c)
The dispersion curves corresponding to model of figures (a) and (b). The thin lines are the theoretical dispersion
curves, not used during inversion. (d) to (e) One auto-correlation curve per array, A, B and C respectively. The
black dots and their errors bars are the auto-correlation data points to be fit during inversion.
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25 m which is the depth of the interface.

A special attention is paid to the limited reliability specific to each array. Based on the

knowledge of the true dispersion curve, we conclude that the wave number limits deduced from

the theoretical array response are consistent with the capabilities of the f-k method. Outside

those limits, the calculated curves may exhibit strong bias. The high-resolution f-k method

is sometimes more efficient than the f-k approach in defining the dispersion curve but no

definitive and systematic improvement may be found. Like the auto-correlation method, the

high-resolution method can be seen as complementary technique confirming the results of the

f-k method.

No method is able to retrieve the velocity below the interface at 25 m. This limited pene-

tration depth is a direct consequence of the high-pass filtering effect of the ground structure on

the vertical component. This characteristic is a strong limitation of the method for assessing

the local amplification factor in earthquake engineering, which depends upon the value of the

velocity contrast.
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Figure 6.19: Inversion of Love and Rayleigh fundamental modes for perfect dispersion curves. (a) Vs models.
(b) Calculated Love dispersion curves. (c) Calculated Rayleigh dispersion curves. The black dots are the target
Rayleigh dispersion curves. The grey dots are the target Love dispersion curve.

Further improvement of the technique should consider horizontal components which are

richer in low frequency waves than the vertical ones (figure 6.2). This alternative is tested in

section 5.1.2 where the Love dispersion curve measured at low frequency combined with the

Rayleigh dispersion curve allows an extention of the reliability of the inversion towards deeper

layers. We compute the theoretical Love and Rayleigh dispersion curves for the ground model

used in simulations. The Rayleigh dispersion curve is cut between 2.5 and 8.5 Hz as observed

in figure 6.2 while the Love dispersion curve is supposed to be known only between 1.5 and

2.5 Hz, in the vicinity of the fundamental resonance frequency. The theoretical Love samples

used for the inversion are represented with grey dots, and the Rayleigh samples with black

dots in figures 6.19(b) and 6.19(c). These two curves are jointly inverted with five independent



124 CHAPTER 6. TEST CASES

runs and the results are shown in figure 6.19. Only the Vs profiles of the generated models are

shown in figure 6.19(a). The corresponding calculated dispersion curve for Love and Rayleigh

are shown in figure 6.19(b) and 6.19(c), respectively. Compared to the Rayleigh wave inversions,

the combined Love and Rayleigh wave inversion correctly retrieves the Vs value below the main

velocity contrast at 25 m. This result stresses out the interest of developing techniques of Love

wave extraction from noise array measurements.

6.2 Liège site

For a simulated wavefield, the theoretical model is perfectly known and the inversion reliability

is easily checked by comparing the results to the known velocity structure. On real sites, the

results have to be validated by external geological or geotechnical information like existing

borehole descriptions, cone penetration test (CPT) or conventional geophysical prospecting

data. Actually, those data are also affected by uncertainties which must be considered in the

validation process. This section compares the results of the three processing techniques applied

to array vibration measurements in the city of Liège, Belgium. The reliability of the techniques

is evaluated using newly acquired seismic refraction data and existing borehole data. Signals

generated by hammer shots were recorded on vertical sensors for measuring the first P-wave

arrivals and the apparent velocity of the triggered surface waves. A special care is paid to the

uncertainties of the interpretation of usual refraction data. Within an urban context, the signal

to noise ratio is relatively low, and the picking of the P-wave first arrivals can be ambiguous.

For each picked time, an error value is estimated. The traveltime-distance curves are then

inverted using the neighbourhood algorithm (Sambridge 1999a) to obtain one-dimensional Vp

profiles. This method offers the advantage over other common approaches to take into account

the picking uncertainties. The artificially triggered surface waves were processed to give the

high frequency part of the dispersion curve (Stokoe et al. 1989, Malagnini et al. 1995), which

might be uncertainly deduced from the processing of microtremor arrays (see below). The

overlapping frequency ranges of ambient vibrations and triggered waves offer the opportunity

to validate the array results. Though only the vertical components of the sensors are used for

the array processing, we measured the three components of the particle motion. The horizontal

to vertical spectral ratios (H/V method, Bard 1998) were computed for all the sensors. The

frequency of the peak of the H/V curve is known to be close to the resonance frequency of the

site (Bonnefoy 2004), giving an additional constraint to the Vs profile.

6.2.1 The test site

The experimental site is situated in the alluvial plain of Meuse river, near the centre of Liège

city, Belgium (figure 6.20). At this location, the valley is about one kilometre wide and the

river divides into two branches (the main stream and its derivation), delineating a lenticular

island of 1.5 km long and 500 m large. The test site, which is a flat and unbuilt zone with

a triangular shape of 200 m side, is located at the North-East end of the island (figure 6.20).
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It is surrounded by several streets and one main road on its South-East side along the Meuse

derivation (figure 6.20).

The geology structure below the city centre is made of alluvial layers overlying a shaly

Paleozoic basement. The layer geometry and properties are well documented on geotechnical

maps (Fagnoul 1975) gathering the existing information (mainly Cone Penetration Tests and
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Figure 6.20: Local map of the test site. Th grey

squares represent the locations of boreholes. The

Cone Penetration Test is marked by a black cross

inside a grey square. The North-South and East-

West P −SV profiles are shown with thin black lines.

borehole data). Twelve boreholes were drilled

to the bedrock in the neighbourhood of the test

site. They are reported in figure 6.20 and their

logs are summarized in table 6.6. Three types

of soft sediments are encountered from top to

bottom: backfills of varying thickness (from 2 to

8 m), fluvial silts or clays of irregular distribu-

tion (down to 6 m depth, sometimes completely

replaced by backfills), and finally a few metres of

sand and/or gravel overlying the bedrock. The

top of the bedrock was found at a depth rang-

ing from 10.5 to 13 m. It is made of Wesphalian

shales and sandstones with numerous coal veins,

intensively exploited during the XXth century.

The bedrock depth reported by the borehole

descriptions may not correspond to a sharp in-

crease of the seismic velocity, due to the pres-

ence of a few metre thick weathered rock layer

Jongmans and Campillo (1990). In the absence

of specific information about the seismic proper-

ties at the test site, we conducted active seismic

prospecting along two profiles oriented North-South and East-West (see figure 6.27 for loca-

tion). Along each line were deployed twenty-four 4.5 Hz vertical sensors with a spacing of 2.5 m

and the waves were generated with a hammer and an explosive source. An example of signals

generated by an explosive source is given in figure 6.21. P-wave arrival times and Rayleigh

waves are clearly visible and were inverted to obtain Vp and Vs profiles, respectively.

Refraction

A method based on the neighbourhood algorithm described in section 1.2.1 is used to invert

real data. For our particular real case, the geological structure evinced from the boreholes is

roughly one-dimensional and the data uncertainties are relatively high due to the bad signal to

noise ratio. Thus, we limit our inversion to velocity structures without dipping interfaces.

The two refraction lines are analysed separately using the method described in section 1.2.1.

The time-distance curves are shown in figures 6.22 and 6.23 (plots labelled (e) to (h)). From

their shapes, it is obvious that a model with at least three layers has to be used for the
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Borehole Backfills Silts or Clay Sand and gravel Bed-rock Water level
B248 0.0 to 2.7 2.7 to 6.0 6.0 to 10.0 - -
B251 - 0.0 to 3.0 3.0 to 12.0 12.0 -
B252 - 0.0 to 2.5 2.5 to 10.6 10.6 -
B253 0.0 to 7.5 - 7.5 to 11.3 11.3 -
B254 0.0 to 5.5 - 5.5 to 10.3 10.3 -
B255 0.0 to 4.5 - 4.5 to 10.3 11.3 -
B294 0.0 to 3.6 3.6 to 6.2 6.2 to 13.0 13.0 -
B295 0.0 to 3.9 3.9 to 4.6 4.6 to 12.6 12.6 3.9
B296 0.0 to 2.0 2.0 to 4.4 4.6 to 12.7 12.7 3.5
B297 - 0.0 to 2.8 2.8 to 11.0 11.0 2.8
B298 0.0 to 2.7 2.7 to 4.9 4.9 to 11.3 11.3 -
B299 0.0 to 8.5 - 8.5 to 13.0 13.0 -

Table 6.6: Borehole descriptions around the site (from geotechnical database). From B294 to B297, the silty
layer is replaced by soft blue clays. Only B248 is included in the area investigated by arrays and geophysical
experiments. Depths measured from surface are in metres.
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Figure 6.21: Recorded signals for East-West P − SV refraction line, West source. First P-wave are visible
on the left with small amplitudes. Surface waves develop between 0.1 and 0.4 seconds and constitute the most
energetic part of the signal.
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Figure 6.22: Refraction results obtained with travel time NA inversion for profile East-West. (a) to (d)
Vp profiles obtained by inversion for South, Central towards South, Central towards North, and North shots,
respectively. (e) and (h) corresponding calculated traveltime-distance curves (in the same order). The black
dots and the error bars are the experimental times picked on recorded signals.
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Figure 6.23: Refraction results obtained with travel time NA inversion for profile North-South. (a) to (d) Vp

profiles obtained by inversion for West, Central towards West, Central towards East, and East shots, respectively.
(e) and (h) corresponding calculated traveltime-distance curves (in the same order). The black dots and the
error bars are the experimental times picked on recorded signals.
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data inversion. The water table is a few metre deep (between 2.5 and 3.9 m from the closest

boreholes) in the alluvial layers and the velocity in the intermediate layer was constrained

between 1400 and 1600 m/s. Five parameters (three Vp and two thickness values) are inverted.

The results are shown in figures 6.22 and 6.23 for lines East-West and North-South, respectively.

The generated ground models are presented in figures (a) to (d) and the comparison of the

calculated traveltimes with the experimental curves is shown in figures (e) to (h). The lowest

misfit found is around 0.2 and a common grey scale for the misfit is adjusted to all cases. A

threshold of one is chosen for the misfit to select all models with traveltime-distance curve

inside the experimental uncertainties.

The feature common to all profiles is the Vp increase to around 1500 m/s at about four

metres deep. It is consistent with the observed level of the river around the site (bank walls)

and with the water table in the holes. Some slight variations may be observed between the

different shots for the superficial layer velocity: for the best model of each shot, Vp ranges

from 275 to 350 m/s, and from 200 to 430 m/s considering the complete uncertainty interval.

The velocity in the basement is poorly constrained, with a range between 2000 and 4000 m/s.

However, from the extremity shots (figures 6.22(d), 6.23(a) and 6.23(d)), the velocity below

15 m is probably around 3000 m/s. There is no evidence of a well defined contrast for the

basement, but a transition zone located between 7 and 15 m is observed for all shots. This

intermediate zone corresponds to the bottom of the alluvial deposits and to the weathered rock

layer which can reach a thickness of five metres (Jongmans and Campillo 1990).

Rayleigh wave processing
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Figure 6.24: Triggered surface waves along P − SV

profiles North-South and East-West. Average spectra

(plain lines) and standard deviations (dashed lines)

for 24 receivers recording a black powder shot situated

at 20 m from the first sensor (thick black lines) and a

hammer shot (grey lines) and the ambient vibrations

recorded with the same sensors (thin black lines).

During the same campaign, the geophone lay-

out was used to record artificially generated

Rayleigh waves. Sources were placed with an

offset of 20 m in order to avoid near-field effects

on the closest receivers. Two kinds of sources

were used: hammer shots like in the preceding

section and explosive loads (100 gr of black pow-

der) buried at about 0.8 m deep. Eight shots

were recorded, corresponding to the two profiles,

the two source types, and the two extremities of

profiles. The averages and the standard devia-

tions of the frequency spectra observed for the

two sources are compared to the ambient noise

level in figure 6.24. The amplitude for the ex-

plosive shots is about 25 times greater than the

amplitude for the hammer shots. The energy

level of the ambient vibrations is so high that

the results from hammer shots might be valid
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Figure 6.25: Triggered surface waves along P −SV profiles North-South and East-West. (a) to (d) Frequency-
wavenumber semblance maps for the different shots: (a) East explosive shot and (b) East hammer shot on EW
profile, (c) South explosive shot and (d) South hammer shot on NS profile. (e) Picking of the maximum apparent
velocity for all source locations and types (8 curves, thin lines for hammers and thick lines for explosives).

only inside a narrow frequency band between 15 and 25 Hz. On the other hand, explosive shots

are far above the ambient noise for all frequencies between 6 and 50 Hz.

For each shot and for all frequency bands, a frequency-wavenumber semblance is calculated

for the linear arrays of sensors. The technique is exactly the same as for the processing of

microtremor arrays (section 1.2.3), except that only one time window is processed. The ap-

parent velocity is deduced for each frequency band. The calculated semblance plots are shown

for two shot positions in figures 6.25(a) to 6.25(d). Figures (a) and (c) are for explosive shots

and figures (b) and (d) for hammer shots. The consistency of the measured dispersion curve

(maximum of semblance) checked for all eight sources in figure 6.25(e) is remarkable. All plots

are cut between 8 and 40 Hz which is inside the valid interval for explosive shots but, amaz-

ingly, outside the hammer shot validity range. One reason could be that the ambient noise is

predominantly made of surface waves, leading to a global coherency of the semblance function.

Below 10 Hz, for both explosive and hammer shots, the uncertainties over the velocity estimates

drastically increase (figures 6.25(a) to 6.25(d)).

The Rayleigh dispersion curve is not directly inverted here to obtain the Vs or Vp profile. It

is used in the next sections, comparing to array results.

SH refraction

One SH refraction profile has been achieved in the centre of the site with two shot points at

each extremity. The S-wave arrivals are picked with an estimation of the error, considering all

directions for each shot. The observed traveltime-distance curve are shown in figures 6.26(c)
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and 6.26(d) by black dots and their associated error bars. From their shapes, it is obvious
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Figure 6.26: Refraction results obtained with travel time NA inversion for SH profile. (a) and (b) Vs profiles
obtained by inversion for the West and East shots, respectively. (c) and (d) corresponding calculated traveltime-
distance curves (in the same order). The black dots and the error bars are the experimental times picked on
recorded signals.

that a two-layer model is sufficient. The neighbourhood algorithm is then launched with three

parameters (Vs of each layer and thickness of first layer). The results are shown in figures

6.26(a) to 6.26(d). The generated ground models are presented in figures (a) and (b) and the

comparison of the calculated traveltime-distance curves with the experimental curves is shown

in figures (c) to (d). The lowest misfit found is around 0.2, similar for both shots. Vs at the

surface is between 100 and 400 m/s considering all models. For the best models, the velocity

is between 260 and 290 m/s. Between 0 and 10 m, Vs increases up to 500 m/s. The maximum

possible velocity at 10 m is around 1000 m/s.

6.2.2 Ambient vibrations recording

Ambient vibrations were measured with two sets of sensors: 10 three-component Lennartz

sensors (resonance frequency of 0.2 Hz) and 22 vertical 4.5 Hz geophones used for the P − SV

experiments. For the first array (A), 22 4.5 Hz vertical sensors were set up 5 m apart on a

17.5 m radius circle (figure 6.27(a)). The hole in the circle of figure 6.27(a) comes from a

defective receiver, resulting in 21 available signals. The ten Lennartz sensors were set up with

three distinct geometries (Arrays B to D, shown on figures 6.27(b) to 6.27(d), respectively).

The geometry of arrays B and D was made of one central sensor and three triangles rotated

by 40◦, with maximum apertures of 40 and 50 m, respectively. Array C has a central sensor

and nine sensors distributed on a circle with a radius of 40 m. All the sensor positions were

measured with a theodolite, expecting a centimetric accuracy.

The horizontal to vertical spectra are calculated for all individual three-component signals.

Typical spectra are shown for the central station in figures 6.28(a) to 6.28(c). The plain line

is the average of all time windows while the dashed lines are drawn at one standard deviation

(geometrical average). The total recording length is 6 hours. Statistics are calculated over
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Figure 6.27: Local maps showing the array geome-
tries (black dots), the refraction lines (shots with
grey stars and receivers with grey circles), borehole
and cone penetration test locations (grey square and
grey squares with cross, respectively). Y axis is ori-
ented towards the magnetic North (site of the old
Bavière Hospital, Liège, Belgium, 50.64◦N, 5.57◦E,
19th March 2002). Each ambient noise array geom-
etry is represented on a separate plot: (a) Array A,
(b) Array B, (c) Array C and (d) Array D.
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Figure 6.28: Spectral curves of the central station
of array A, B and C. The plain line is the average and
the dashed lines are located at one standard devia-
tion. (a) Amplitude spectrum of the vertical com-
ponent. (b) Amplitude spectrum of one horizontal
component. (c) Spectral ratio Horizontal to Vertical
(H/V). Grey bands indicate the average and stan-
dard deviation of the frequency peak values observed
for each individual time window.

3690 time windows of five seconds each. The vertical and an horizontal component spectra are

presented in figures 6.28(a) and 6.28(b), respectively. A clear high pass filter effect is observed

for the vertical component as demonstrated by Scherbaum et al. (2003) for a synthetic case.

The ratio of the vertical to the horizontal average component is shown in figure 6.28(c) and it

exhibits a well developed peak at 5.3 Hz. The results are quite similar for the other stations,

with a mean frequency varying from 4.8 to 5.3 Hz with a standard deviation of about 0.5 Hz.

The average value of the peak frequency is 5.17±0.57 Hz (29015 time windows of five seconds)

over the whole area. The small spatial variation of the resonance frequency is supporting the

assumption of a one-dimensional structure.

6.2.3 Frequency-wavenumber method

As shown in section 6.1, the computation of the theoretical frequency-wavenumber array re-

sponse is a mandatory tool for assessing the reliable range of the dispersion curve. These
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theoretical responses are calculated for arrays A to D in figures 6.29(a) to 6.29(d). The resolu-

tion and aliasing limits (section 1.1.1) defined from plots (a) to (d) are reported in table 6.7.
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Figure 6.29: Theoretical frequency-wavenumber
response calculated for Arrays A to D (figures (a)
to (d), respectively.

Theoretical FK response
0.2 0.4 0.6 0.8

Array Resolution limit Aliasing limit
A 0.056 1.33
B 0.045 0.28
C 0.030 0.18
D 0.024 0.11

Table 6.7: Wavenumber limits (rad/m) deduced
from theoretical array responses (figure 6.29).

For array A, the signals were recorded with 16 short windows of four minutes. For arrays

B to D, continuous signals are available during 1 hour, 46 minutes, and 1 hour 20 minutes,

respectively. For each array, vertical components are processed from 2 to 20 Hz using the

method described in section 6.1. The apparent velocity is estimated from time windows with

a length of 50 cycles, with an overlap of 50% with their neighbours. The statistical results

(velocities of the semblance peaks) in the velocity-frequency plane are presented with one

histogram per frequency band in figures 6.30(a) to 6.30(d) for arrays A to D, respectively.

The three curves indicate the wavenumber limits (k equal to a constant) deduced from the

theoretical array response: resolution (plain lines), half of the aliasing (dotted lines), and

aliasing wavenumber (dashed lines). For arrays A and B, the velocity estimate is remarkably

stable against time within the wavenumber limits. According to the resolution criterion (table

6.7) the velocity values may be biased below 6 Hz for those two arrays. Indeed, the average

velocity values observed at 5 Hz for arrays B and A (& 1600 m/s) are higher than the velocity

measured by array C (≈ 1200 m/s) which has a correct response at this frequency. Moreover,

the uncertainties below 6 Hz increase for all arrays, even within the valid wavenumber range of

array C. This is probably due to the energy drop on the vertical component at the vicinity of

and below the resonance frequency (around 5.2 Hz from H/V results).

Figure 6.31 shows the average dispersion curve (black curve and error bars) calculated

from arrays A to D, keeping the data between the resolution and half the aliasing limits. On

the same graph is plotted in grey the average dispersion curve calculated from the triggered

surface waves. An indisputable agreement is found between 12 and 20 Hz. In this range,

the curve differences all fall inside the respective standard deviations. Between 8 and 12 Hz,
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Figure 6.30: Results of the frequency-wavenumber method applied to arrays A to D ((a) to (d), respectively).
The three exponential curves represent constant wavenumber curves values of which are deduced from theoret-
ical frequency-wavenumber response (figures 6.29): minimum (continuous line), half the maximum (dots) and
maximum wavenumber (dashed).
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Figure 6.31: Average and standard deviations (vertical bars) of apparent dispersion curve from arrays A to D
(black dots). The grey dots represent the average dispersion curve calculated from figure 6.25(e) for triggered
surface waves.
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the array velocity is slightly higher than the active experiment results which are affected by a

relatively high uncertainty (figure 6.25). The array dispersion curve is then considered in the

low frequency range and extended from 20 to 40 Hz using the active experiment results. The

global dispersion curve is shown with black dots in figure 6.32(c).

Before inversion, the ranges of the seven parameters (Vp and Vs in the three layers and the

thicknesses of the two uppermost layers) are defined in table 6.8 according to the geometry

and characteristics discussed in section 6.2.1 on page 125. This parameterisation was used to

generate 50,000 models by five independent runs with the neighbourhood algorithm. Of these,

the 17,500 models found with a misfit less than 1 are plotted in figures 6.32(a) and (b) with a

misfit grey scale. The lowest misfit obtained is 0.44. The corresponding dispersion curves are

shown in figure 6.32(c) with the same grey scale.

Layer Bottom depth Vp Vs/Vp Density Vp variation
Sediments 2 to 7 m 200 to 430 0.01 to 0.707 2 t/m3 –
Sediments 7 to 15 m 1400 to 1600 0.01 to 0.707 2 t/m3 –
Half-space – 2000 to 5000 m/s 0.01 to 0.707 2 t/m3 –

Table 6.8: Parameters and their prior interval for spectral curve inversions (dispersion curves and auto-
correlation curves).
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Figure 6.32: Inversion of the average dispersion curve of figure 6.31. (a) Vp profiles and (b) Vs profiles of the
generated models. (c) The corresponding dispersion curves (grey scale). The observed curve of figure 6.31 is
shown by black dots and error bars.

From figure 6.32(b), the Vs profile is well constrained and almost constant on the first six

metres, with a slight increase from 220 m/s at the surface to 250 m/s at 6 m. Below this depth,

the uncertainties increase dramatically. The depth of the major velocity contrast is between

10 and 15 m with a basal shear wave velocity between 1000 and 3000 m/s. The relatively high

frequency content of the Rayleigh waves and the uncertainty on the dispersion curve do not

allow a more precise definition of the depth and of the shear wave velocity below 8 m. The
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Vp profile is little constrained by the dispersion curve inversion (figure 6.32(a)) and does not

provide additional information above 8 m, when comparing to the refraction results (figures 6.22

and 6.23).

The ellipticity and the SH transfer function have been calculated for the best model. They

exhibit a single peak around 5.2 Hz which corresponds to the H/V measurements. However,

for the ensemble of models shown in figure 6.32, the peak of the theoretical ellipticity is widely

distributed. Consequently, according to the H/V criterion, some models may be discarded. A

joined inversion described in section 5.3 is hence performed with the same parameterization as

in figure 6.32 (table (6.8)). The weights for the dispersion curve and the ellipticity frequency

are 0.5. The results are presented in figure 6.33. The lowest misfit obtained is 0.23 which is

approximately half of the misfit in figure 6.32, meaning that the frequency of the H/V peak is

nearly perfectly fit, because the minimum misfit that can be achieved with the parameterization

of table 6.8 is around 0.44.
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Figure 6.33: Inversion of the average dispersion curve of figure 6.31 and ellipticity peak. (a) Vp profiles and
(b) Vs profiles of the generated models. (c) The corresponding dispersion curves (grey scale). The observed
curve of figure 6.31 is shown by black dots and error bars. (d) Calculated ellipticities (grey scale). The vertical
black lines delineate the target frequency of the peak (5.17 Hz±0.57 Hz). The thin black curve is the average
H/V ratio observed for the central station (figure 6.28(c)).

Comparing figures 6.32(b) and 6.33(b), the joined inversion with the ellipticity clearly results

in a better defined depth of the basement. It is impossible to find a model that fits the frequency
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of the H/V peak with a depth above 9 m. The highest limit of the depth interval is also slightly

reduced, probably around 14 m.

6.2.4 High resolution method

The high resolution frequency-wavenumber method is used on the same signals as the f-k

method. The results are shown in figures 6.34(a) to 6.34(d) for array A to D, respectively.

For array A, 16 signal windows were processed separately providing 16 velocity estimates by

frequency band (figure 6.34(a)) while only one velocity estimate is available for arrays B and C.

For array D, two windows are available and two velocity estimates are determined by frequency

band (figure 6.34(d)). The average dispersion curve obtained with the f-k method is plotted for

comparison, as well as the wavenumber limits deduced from the theoretical array responses.
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Figure 6.34: Results of the high resolution frequency-wavenumber method applied to arrays A to D (figures
(a) to (d), respectively), represented with black dots. The dispersion curve observed for frequency-wavenumber
method is plotted for comparison in grey. Wavenumber limits deduced for the f-k method are also shown with
the same legend as in figure 6.30.

For synthetic signals (section 6.1), the high resolution method results were consistent be-

tween each other and agreed with the ones obtained with the f-k method and even gave a better

estimate of the true dispersion curve for some frequencies. For this real case, strong discrepan-

cies are observed between the different curves for the high resolution method and between the

two methods for some frequencies, even in the theoretical validity range. For instance, the ve-

locity value measured by array A at 6.5 Hz (around 500 m/s) with the high resolution method is

lower than the one measured with the same method by the other arrays (about 700 m/s). This

last value is consistent with the results of the f-k method. Also an abnormal jump on the high
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resolution curve is observed (figure 6.34(d), array D) around 6 Hz, while the curve obtained

by f-k method exhibits a regular decrease with frequency. The high resolution results for array

A at high frequency seem to indicate the existence of higher modes. The uncertainty on these

results is obviously too high to use this information for inversion purposes. As a conclusion, the

high resolution method appears to be unable to obtain a reliable velocity estimate below 6 Hz

in this case. Over 6 Hz, a good agreement is reached between the high resolution and the f-k

methods in the valid frequency range of the arrays. The f-k method then appears to be more

robust in the whole frequency range, with an increase of the uncertainty in the low frequency

range.

6.2.5 Spatial auto-correlation method

This method is applied to the four arrays but only array A is shown here. Arrays B, C, and D

are not shown here because the obtained auto-correlation curves are not consistent according

to the test described in section 5.2.3. The array geometries are probably not well adapted

for the auto-correlation method. For non circular arrays, the spatial auto-correlation method

requires the definition of rings (Bettig et al. 2001) and the ten rings chosen for array A are

shown in figure 6.36. The auto-correlation curves are calculated using the method described

in section 6.1. Three of the ten auto-correlation curves are presented in figure 6.35 (black and

grey dots). The consistency of all 10 auto-correlation curves is checked in figure 6.37 with the

grid method described in section 5.2.3. From 5 to 12 Hz, all rings are consistent with each other

and a common dispersion curve is delineated by the dashed lines and the wavenumber limits

(plain and dotted lines). The data outside of those limits are considered as incoherent and are

discarded. They are marked with grey dots on the auto-correlation curves of figure 6.35. The

data selected from the ten auto-correlation curves are inverted together with the neighbourhood

algorithm as in section 6.1. Five runs are used with the same parameterization as for the

frequency wavenumber method (table 6.8). The Vs profiles are shown in figure 6.38. The three

of the ten calculated auto-correlation curves are shown in figures 6.38(d) to 6.38(f) with the

experimental black dots and the error bars shown in figure 6.35. The minimum misfit found

is 0.65. This relatively high value is due to the residual inconsistencies between the ten auto-

correlation curves. Above 8 Hz, both frequency wavenumber and auto-correlation methods give

the same dispersion curve. If we assume that a misfit of one is a good threshold to select all

models within the experimental uncertainties, this example shows that the final Vs uncertainty

range for all depth above 8 m is larger for the auto-correlation method than for the wavenumber

method. For frequencies below 8 Hz, a huge gap is observed between the two methods, with

much lower velocity estimates for the auto-correlation results. Moreover, the experimental

auto-correlation curves are not correctly fit below 6 Hz. In figure 6.38(f), the experimental

points below 8 Hz are located on the left side of the calculated curves, which correspond to

an increase of the velocity and to a better agreement with f-k methods. On the contrary, in

figure 6.38(e), fitting the experimental points below 6 Hz would imply an even lower velocity.

The same type of deviation is observed for the high resolution method (figure 6.34(a)). This
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Figure 6.35: Examples of auto-correlation curves
obtained for array A. The black dots and error bars
are the samples selected according to criteria of fig-
ure 6.37.
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Figure 6.36: Azimuth-inter-distance plot for array
A: each dot represent one couple of stations. The
pairs of grey circles show the limits of the chosen
rings.
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Figure 6.38: Inversion of the selected samples of 10 auto-correlation curves for array A. Only three of them
are presented here. (a) Vp, (b) Vs of generated models and (c) corresponding dispersion curves. The dispersion
curve observed for frequency wavenumber method is plotted for comparison in grey. (d) to (e) Auto-correlation
curves for three rings with the observed ones (black dots and error bars).
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difference has a strong influence over the inversion as shown by figure 6.38(b).

6.2.6 Conclusions

A shallow sedimentary structure (10 to 15 m) of alluvial sediments over a shaly bedrock is

investigated with ambient vibration arrays to derive the shear-wave velocity profile. Four

arrays with distinct geometries are deployed on the site. Three array processing methods are

used to derive either the dispersion curve or the auto-correlation curves. These curves are

then inverted with the neighbourhood algorithm, which is well-suited to problems affected by

strong non-uniqueness. Additionally, information from boreholes, classical refraction and active

surface wave experiments are analysed to check the validity of the array results.

Of the three processing techniques, only the f-k method provided coherent dispersion curves

for the three arrays and proved to be the more robust. The results provided by the high reso-

lution technique globally agree with the first method but exhibit unexpected sharp variations

of the dispersion curve at some frequencies. Finally, the auto-correlation technique was only

usable for one array and appeared to be very sensitive to uncorrelated noise.

The refraction results provide a Vp profile with its uncertainties. For the inversion of am-

bient vibrations, Vp profiles are uniformly chosen within this uncertainty interval. With only

the vertical component, a good definition of Vs down to 8 or 10 m is achieved. Below, the

experimental uncertainties are too great to obtain a correct estimation of the velocity. The in-

troduction of the H/V peak frequency as a supplementary constraint improves the final results

by reducing the posterior uncertainty about the depth of the basement.

This example clearly demonstrates that any single method and any single array aperture is

not valid for a reliable determination of the Vs profile. On the contrary, we used all available

methods to find out the robust features and to discard the contradictory results. The use of

the horizontal components would probably improve the determination of the deeper structure.



Conclusions

In the framework of array measurements of ambient vibrations, the objective of this thesis was to

improve the inversion of dispersion curves in order to retrieve the Vs profile of a ground structure.

The uncertainties in the determination of the dispersion curve generally lead to a problem

highly affected by non-uniqueness. Direct search methods, like the neighbourhood algorithm

considered in this work, offer at least two advantages over classical linearization approaches: the

whole parameter space is investigated and prior information is easily introduced by restricting

the search to particular regions of the parameter space. However, these methods require a great

number of forward computations. Moreover, the calculation of theoretical dispersion curves is

done numerically and classical codes need to be tuned on a case-by-base basis to give the right

answer. Consequently, we developed a new optimized and reliable algorithm to calculate the

theoretical dispersion curve of any one-dimensional model, including fundamental and higher

modes of Rayleigh and Love waves. We also extended the capabilities of the tool to the inversion

of the auto-correlation curves.

The Rayleigh dispersion curves observed on the vertical components are generally not avail-

able at low frequency due to the high-pass filter effect of the ground structure, which drastically

reduces the penetration depth of the method. A variety of strategies were tested to overcome

this limitation. The contribution of prior information about Vp, about the depth of the major

contrasts, and about the frequency of the H/V peak were considered. No significant improve-

ment was found with only one of these types of additional constraints, but their combined

effects always help in a better definition of the Vs profile.

Configurations with a great number of layers, ten in our case, showed that the non-uniqueness

of the problem dramatically increases when low velocity zones are allowed in the ground model.

However, forbidding such model feature is not straightforward with the original neighbourhood

code. Several strategies were developed which prove that this kind of prior information is of

prime importance. The lack of flexibility with these approaches led us to revise the neighbour-

hood algorithm itself. It was re-written in C++ with the possibility of fixing prior conditions

between parameters, like the one induced by Poisson’s ratio or by the absence of negative ve-

locity contrast. This alternative offers good perspectives, eventually for other purposes, but

intensive testing is still necessary.

The horizontal components are usually high-pass filtered at a lower frequency than the

vertical ones. If the dispersion curve of Love waves can be estimated, the joint inversion of

high frequency Rayleigh and low frequency Love dispersion curves is a good alternative to
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investigate the deep part of the ground model. This is an interesting property that opens

perspectives towards a better prediction of the site amplification from array measurements.

The observed dispersion curves might follow the fundamental (usual assumption) or any of

the higher modes. If the harmonic branches can be correctly identified, including all modes into

the inversion slightly improves the final results. It also provides a good way of confirming the

inversion results obtained with the fundamental mode. However, for our test case, the frequency

range where the first higher mode is likely to be observed contains redundant information with

the fundamental mode. On the contrary, we show that a misidentification of the observed

modes introduces bias in the results. An experimental code is developed to search all possible

solutions not requiring a preliminary and subjective identification of the modes. Assuming the

number of potential modes, we show that only a few model classes really fit the data curve.

Prior information is still necessary to select the appropriate family of models.

We tested the inversion tool for non-perfect dispersion curves estimated from microtremor

recordings, either synthetic or real. Signal processing of array measurements includes the

frequency-wavenumber, the high resolution frequency-wavenumber, and the auto-correlation

methods. These methods provide a reliable dispersion curve over a limited wavenumber range

which mainly depends upon the array geometry. Including biased part of the curves into the

inversion might lead to incorrect results. Hence, strict rules for pre-processing input curves are

developed. We tested the relevance of the limits deduced from the theoretical array response

which is entirely calculated with the array geometry. A good agreement is found between them

and the range of the correct determination of the dispersion curve.

Among the methods for processing the raw recordings of ambient vibrations, the auto-

correlation method does not provide the dispersion curve in a direct way like the frequency-

wavenumber methods. Classical approaches involve two inversion processes which are known

to be highly non-linear. We developed a one step inversion with the neighbourhood algorithm.

Besides the simplicity, the advantage of this method is that the auto-correlation data uncer-

tainties are fully considered during the inversion. An original contribution of this work is also

the definition of a methodology for assessing the valuable parts of the auto-correlation curves

to invert.

The alluvial plain of Meuse river (Liège, Belgium) has been choosen for the deployement

of the array method due to its one-dimensional structure (shallow alluvial deposits overlying a

shaly bed-rock) and due to the available geotechnical data. Information from boreholes, classical

refraction, active surface wave experiments, and from the H/V peak frequency were analysed

to check the validity of the array results. Only the frequency-wavenumber method provided

consistent dispersion curves for all arrays and proved to be the most robust. The results of

the high resolution technique globally agreed with the first method but exhibit unexpected

sharp variations of the dispersion curve at some frequencies. Finally, the auto-correlation

technique was only usable for one array. These last two methods appeared to be very sensitive

to uncorrelated noise. A reliable Vs profile was obtained down to 10 m. The depth of the main

velocity contrast is estimated with a relatively good precision (the depths found vary from 9 to
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14 m) but no information can be retrieved below. This reinforces the interest of investigating

the three-components techniques to retrieve the Love dispersion curve.

– – –

During this thesis, we developed a collection of interpretation techniques devoted to ambient

vibration measurements. Prior information is necessary to overcome the non-uniqueness of the

dispersion curve inversion. We provided the tool for integrating them in a rational way.

Several promising improvements have still to be studied and tested. The extraction of Love

dispersion curve from ambient vibrations is not as direct as the determination of Rayleigh

dispersion curve from the vertical component. Signal processing methods have to be tested on

synthetic and real experiments to assess the real potentialities. The spatial auto-correlation

method applied on the three components of the recordings also offers a solution to characterize

the relative portions of Love and Rayleigh waves in microtremors, which is a necessary step for

understanding the noise wavefield structure.

The conditional neighbourhood algorithm developed in this thesis takes into account the

physical conditions between parameters, which is necessary to avoid the low velocity zones

during inversion. This work proved that this kind of prior information is of prime importance.

However, this code still needs intensive testing.

The use of a resampling of the ensemble of models (Sambridge 1999b) may provide objective

statistics that are not possible with the current misfit based approach.

The joint inversion with refraction measurements and a better recognition of the higher

modes by means of external information are also topics to study in order to improve the

velocity accuracy.

All the preceding discussion focalized on one-dimensional models. Extension to three-

dimensional cases might be considered in the future with the current development of finite

difference codes to simulate the ambient vibrations. If the direct inversion is still not consid-

ered with these codes, currently available three-dimensional synthetic wavefields will give the

opportunity of a better understanding of the noise properties in such cases.
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Appendix A

Sub-determinants of R(i)

The solution of the equation of motion for Rayleigh modes implies the computation of sub-

determinants of matrix R(z0) (section 3.1.4, equation (3.34)). In this appendix, we present the

complete analytical expressions of these terms. For doing so, we define the following adimen-

sional real quantities:

hn = ĥn/k (A.1)

kn = k̂n/k (A.2)

SH = 0.51−e−2dnĥn

hn

CH = 0.5(1 + e−2dnĥn)

}

if hn is real. (A.3)

SH = sin(−idnĥn)
hn

CH = cos(−idnĥn)

}

if hn is imaginary. (A.4)

SK = 0.51−e−2dnk̂n

kn

CK = 0.5(1 + e−2dn k̂n)

}

if kn is real. (A.5)

SK = sin(−idnk̂n)
kn

CK = cos(−idnk̂n)

}

if kn is imaginary. (A.6)

where dn = zn − zn−1 is the thickness of layer n.

γn = 2k2/(ω/Vpn)
2 (A.7)

a1 = γ2
n − 2γn + 1

a2 = h2
nk2

n

a3 = γ2
n + a1 (A.8)

a4 = 1 − γn

a5 = γ2
na2

expCorr = e−ĥndn−k̂ndn (A.9)
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And we also define the following two dimensional quantities:

c1 = ρnω2/k

c2 = 1/c1 (A.10)

The sub-determinants of Gn are detailed here below (Gijkl = gn

∣
∣
∣
∣
∣

i j

k l

∣
∣
∣
∣
∣
, G is real, i before

G means that this component is imaginary) :

G1212 = a3CHCK − (a1 + a5)SHSK − (a3 − 1)expCorr

G1213 = c2(CHSK − h2
nSHCK)

iG1214 = ic2((a1 − γ2
n)(expCorr − CHCK) + (a4 − γna2)SHSK)

iG1223 = iG1414

G1224 = c2(k
2
nCHSK − SHCK)

G1234 = c2
2(2CHCK + (1 + a2)SHSK)

G1312 = c1(γ
2
nk

2
nCHSK − a1SHCK)

G1313 = CHCK

iG1314 = i(a4SHCK + γnk
2
nCHSK)

iG1323 = iG1314 (A.11)

G1324 = k2
nSHSK

G1334 = G1224

iG1412 = ic1((a1 − a4)(a4 − γn)(expCorr − CHCK) + (a4a1 − γna5)SHSK)

iG1413 = i(γnh2
nSHCH + a4CHSK)

G1414 = expCorr + G1423

G1423 = CHCK − G1212

iG1424 = iG1314

iG1434 = iG1214

iG2312 = iG1412

iG2313 = iG1413

G2314 = G1423

G2323 = G1414

iG2324 = iG1314

iG2334 = iG1214

G2412 = c1(a1CHSK − γ2
nh2

nSHCK)

G2413 = h2
nSHSK

iG2414 = iG1314
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iG2423 = iG1413

G2424 = G1313

G2434 = G1213

G3412 = c2
1(2γ

2
na1CHCK + (a2

1 + γ2
na5)SHSK)

G3413 = G2412

iG3414 = iG1412

iG3423 = iG1412

G3424 = G1312

G3434 = G1212

Tijkl = t−n 1

∣
∣
∣
∣
∣

i j

k l

∣
∣
∣
∣
∣

and from equation (3.31), T1214 and T1223 are equal and imaginary. Using

equation (3.34) and definition of G (equations (A.11)), it follows:

R1212(zn−1) = T1212G1212 + (T1213G1312 − 2T1214iG1412 + T1224G2412 − T1234G3412)/ω
2 (A.12)

R1213(zn−1) = ω2T1212G1213 + T1213CHCK − 2T1214iG1413 − T1224G2413 + T1234G2412

R1214(zn−1) = ω2T1212iG1214 + T1213iG1314 + T1214(2G1423 + expCorr) − T1224iG1413 + T1234iG1412

R1223(zn−1) = ω2T1212iG1214 + T1213iG1314 + T1214(2G1423 + expCorr) − T1224iG1413 + T1234iG1412

R1224(zn−1) = ω2T1212G1224 + T1213G1324 − 2T1214iG1314 + T1224CHCK + T1234G1312

R1234(zn−1) = −ω2T1212G1234 + T1213G1224 − 2T1214iG1214 + T1224G1213 + T1234G1212
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Appendix B

Generating increasing velocity profiles

As reported in section 4.3.1, ensuring an increasing velocity across a ground structure is nec-

essary to retrieve information from the inversion of dispersion curves. Methods of parameteri-

zations to achieve this requirement are proposed in this appendix. The parameterization may

introduce prior information into the inversion by preferring some classes of models to others.

The best method is the one that provides an equal chance to all models to be generated at

random.
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Figure B.1: Prior information carried by pa-

rameterization: LVZ (Vs profile). The black

lines are the minimum and maximum velocity

profiles admissible.

The various methods are tested in terms of prior in-

formation brought by the parameterization itself. For

doing so, 10000 models are randomly generated with

each type of parameterization. At each depth, an his-

togram is constructed counting the number of occur-

rences in each velocity class (100 classes from 0 to

the maximum velocity allowed by the parameteriza-

tion). All histograms are summarized in a velocity-

depth plot with the number of occurrence indicated by

grey scales. A first example is shown in figure B.1 for

the Vs profile of the inversion of section 4.3.1. The dis-

tribution at each depth is not perfectly uniform which

is prone to introduce some uncontrolled prior infor-

mation if Vs is not well constrained by the dispersion

curve. On the contrary, for the same case, the Vp

profile has a perfect uniform distribution (not shown

here). This fact is unavoidable when making a vari-

able transformation to obtain the physical parameters

of the ground model (section 4.2).
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B.1 Selection method

Among the random models generated as in section 4.3.1, the parameterization algorithm selects

only the one fulfilling the physical condition and having an increasing profile. With a great

number of layers, this method needs quite a lot of time as the probability of having no LVZ

is very small. Practically, it does not work. Like the parameterization in figure B.1, the prior

information provided by the parameterization is optimum (uniform distribution).

B.2 Sorting method

A possibility to obtain an increasing velocity profile would be to generate N random velocities

and to sort them. This method presents the major drawback that each random deviate is

not linked to the velocity at a particular depth. The parameter space may be very complex.

Moreover, there are little chances to generate a model with a deep and sharp contrast, because

it requires that nearly all random values are small.

B.3 Velocity-jump method
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Figure B.2: Prior information carried by

parameterization: velocity jump. The black

lines are the minimum and maximum velocity

profiles admissible.

The velocity of the first layer is the first parameter.

The other parameters are the velocity jumps from one

layer to the next one. This is the basic approach that

has been implemented when the number of layers is

small (section 4.2). The velocity for any layer i is

defined by V0 +
∑i

j=1 dVj where V0 is the random ve-

locity of the first layer and dVj the velocity jump at

each interface. V0 and dVj are random variables with

a uniform distribution in the best case. Then Vi is the

sum of uniform random variables and its distribution

tends to a Gaussian distribution when the number of

layers increases (central limit theorem).

Figure B.2 shows the histograms for a parame-

terization where the velocity varies between 100 and

265 m/s (≈
√

2
2

Vp0) at the surface and where all dVj

are randomly chosen between 0 and 400 m/s. This

kind of parameterization may be acceptable for Vp be-

cause there are usually no special conditions on Vp

values. On the contrary, Vs values are linked to Vp

values (0 ≤ ν ≤ 0.5) and this condition is impossible to impose with this method. As shown

by figure B.2, this kind of parameterization naturally orientates the inversion towards a regular

increase of the velocity with depth.
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B.4 Interpolation method

In the preceding method, it is impossible to allow strong velocity contrast (the maximum in the

example is 400 m/s) and to limit the maximum velocity (> 4000 m/s in the example) of the

model. To improve the method, a minimum (Vmin) and a maximum (Vmax) velocity are first

defined. The velocity of any layer (Vi) is defined as the first parameter (Vmin < Vi < Vmax).

The velocities of the other layers are successively calculated to the top and to the bottom by
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Figure B.3: Prior information carried by parameterization: interpolation. The black lines are the minimum

and maximum velocity profiles admissible. Starting layer is the (a) first one, (b) the 7th, and (c) the last one.

Vi−1 = Vmin + p(Vi −Vmin) and Vi+1 = Vi + p(Vmax −Vi), respectively (p is a random parameter

between 0 and 1).

Figure B.3 shows the histograms for the several starting layers with Vmin = 200 m/s and

Vmax = 4000 m/s. The starting layer has a strong influence on the prior information provided by

the parameterization. To give all models an equal chance of being a solution, various inversions

with complementary starting layers must be run.

B.5 Interpolation method with random start

This method tries to improve the parameter space exploration by changing the index of the first

layer. A random integer, between 0 and n− 1 (if n is the number of layers), specifies the index

of the starting calculation. The computation of the velocity profile is done in the same way. A

new degree of freedom must be added and the parameter space has a more complex shape. In

the preceding method, there is a one-to-one relationship between the velocity profile and the set

of generated random deviates. With this new parameter, one velocity profile corresponds to an

infinity of possible sets of random deviates. In figure B.4, this method clearly provides a more

uniform prior distribution than the preceding approaches but at the cost of a supplementary
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parameter.

B.6 Bissection method
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Figure B.4: Prior information carried by pa-

rameterization: random interpolation. The

black lines are the minimum and maximum

velocity profiles admissible.

Without adding a new parameter, the bissection

method may bring a better prior distribution than

the basic interpolation method. The velocities are de-

fined by a minimum value (first parameter, V ). The

other parameters are between 0 and 1. A total veloc-

ity variation is calculated from the second parameter

p1, δV = p1∗(Vmax−V ). The velocity of the first layer

and last layer are set to V and V + δV , respectively.

The calculation of velocities starts from the layer at

the middle of the stack, Vi = V + piδV . The stack

is then cut in two sub-stacks limited by velocities V ,

Vi and Vi, V + δV . The calculation is the same in

each sub-stack until every layer has been affected a

velocity. The resulting prior distribution is shown in

figure B.5. Comparing it with figures B.2 and B.3, a

more uniform distribution is achieved without adding

a new parameter. Contrary to the preceding method,

each basic random parameter is directly linked to the

velocity at a fixed depth, which tends to simplify the

parameter space. Profiles with a low velocity at depth are rarely generated. If the velocity of

the last and first layer are set to V , and V − δV , respectively, a symmetric image is obtained.

B.7 Diagonal method

The spirit of this method is to give the same chance to models with a regular velocity increase

and to models with sharp contrasts. The velocities are defined by a minimum value (first

parameter, V ). The other parameters are between 0 and 1. A total velocity variation is

calculated from the second parameter p1, δV = p1∗(Vmax−V ) where Vmax is the fixed maximum

velocity (4000 m/s in this case). The third parameter is the intersection of the profile with the

ascending diagonal of the rectangle defined by the V and V + δV of the top and the bottom

layer, respectively. 0 means minimum velocity to be affected to the deepest layer. 1 means

maximum velocity to be affected to the highest layer. The already defined layer separates the

stack into two sub-stacks that can be processed in the same way. The prior distribution for

this method is given in figure B.6. The results are quite similar to the results of the preceding

method, except for profiles with low velocity at depth where this method appears to be slightly

more efficient. A symmetric distribution can also be generated by inverting the velocity of the
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Figure B.5: Prior information carried by param-
eterization: bissection. The black lines are the
minimum and maximum velocity profiles admissi-
ble.
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Figure B.6: Prior information carried by param-
eterization: diagonal. The black lines are the min-
imum and maximum velocity profiles admissible.

first and last layer like in the above method.

B.8 Including Poisson’s ratio

None of the described methods offers a really uniform prior distribution like the one obtained

for the arbitrary profiles (section 4.3.1 and figure B.1). And the physical limits, like the limits

on the Poisson’s ratio, are not handled. However, with a fixed Vp profile (not random), it is

possible to generate pseudo Vs profiles between 0 and 1 m/s with one of the available methods.

In a second step, Vs in each layer is scaled to [Vmin, Vi,max], the maximum values being calculated

from the increasing and fixed Vp profile. The minimum value must be the same for all layers to

avoid any LVZ when scaling the pseudo profile. The effect of the scaling transformation applied

to the diagonal method (section B.7) is shown in figure B.7 for a fixed Vp profile equal to the

one of the theoretical model (figure 4.1(a)). By comparison the scaling transformation is also

applied to the interpole method, starting from last layer (section B.4). If Vp is also variable, the

Vs prior density of probability is less uniform than in figure B.7. With the interpole method,

the maximum Vs profile represented by the black line has almost no chance to be generated by

the inversion algorithm. The diagonal offers a more uniform prior distribution with an similar

probability for all model.

B.9 Conclusions

For the parameterization described in section 4.2, the model can be constructed from the param-

eters in a direct way. For the methods proposed in this appendix, integrating the relationships
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Figure B.7: Prior information carried by param-
eterization: scaled diagonal. The black lines are
the minimum and maximum velocity profiles ad-
missible.
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Figure B.8: Prior information carried by param-
eterization: scaled interpole. The black lines are
the minimum and maximum velocity profiles ad-
missible.

between layers into a generic structure would require the definition at the user level of blocks

and sub-blocks of layers where Vp and Vs are managed for the whole block and not for each

particular layer. The description of such models would be less flexible than the basic descrip-

tion layer by layer detailed in section 4.2. The examples of this section have been calculated by

hard coding1 the layer structure for each case. No generic construction tool has been developed

until now. Actually, the new conditional neighbourhood algorithm offers the possibility to set

whatever condition between any parameters in a very flexible way. This why no special effort

has been put on developing ready to use codes for the methods detailed in this section.

1parameter values explicitly written in the code, compilation is necessary to change it
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Knopoff, L. (1964). A matrix method for elastic wave problems, Bull. Seism. Soc. Am. 54,

431–438.

Kvaerna, T. and F. Ringdahl (1986). Stability of various fk-estimation techniques, in Semian-

nual Technical Summary, 1 October 1985 - 31 March 1986, In NORSAR Scientific Report,

1-86/87, Kjeller, Norway, 29–40.
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