

Relation between array response and array analysis

Tutorial

Relation between array response and array analysis

- 1. Relation between array response and FK estimates \Rightarrow Introduction to *fk* tool
 - \Rightarrow Introduction to *build_array* tool
- 2. FK computation
 - \Rightarrow Input parameters
 - \Rightarrow fk gridding
 - \Rightarrow Post-processing (use of *max2curve* tool)

Using Ambient Vibration Array Techniques SESARRAYCRAGKAGE

figue figures

Array response

array

build

(1) You will be given the processing parameters

- (2) we will see the link between the observed phase velocities estimates and the array response for different array size
- (3) We will then provide quantitative criteria for choosing the processing parameters which are related to the array layout
- (4) We will show you how to use the post processing tools for improving phase velocity estimates

Using Ambient Vibration Array Techniques for Site Characterisation Loading geopsy database ~/data/EXERCISES_FK/EX01/*.gpy

📧 Geopsy -			
File Edit View Wavef	orm Tools Windows	Help	
🧭 🖯 🙀 · 🔳		🔛 🔜 🖶 📉 📖 🖋 🚍 🖾	
Files	₽×		
All signals Temporary signals All files Temporary files Dermanapt filos	Open a databas	e	
Permanent nies			
K Groups I I	cornou	Coordinates C data C model M21_array_circles.gpy	FileIder 22/11/2007 FileIder 22/11/2007 FileIder 22/11/2007 Z KB gpy File 20/07/2007
		<	>
	File name: M21_a	rray_circles.gpy	Open
	Files of type: Geops	y database (*.gpy *.sdb)	Cancel

6

Display signals and array layout

Window

length=30T

- Activate signals graphic of group *circle2_6stations_16meters*
- Launch the fk tool
- Set time parameters (limits, window length)

Geopsy - E:\cornou\TEACHING\Se	array_Bangalore2007\EXERCISES\FK\ex01W21_array_circles.gpy
File Edit View Waveform Tools W	ndows Help
🥟 🕞 🙀 - 📰 🔙 🖼	
Files 5	K Granbic - circle2 6stations 16meters
All signals	
Temporary signals	
All files	
Permanent files	
M02.1 3001 0500 0507 0000.1.sac	🛛 🖸 🐼 FK toolbox
M02.1_3001_0500_0507_0000.2.sac	
M02.1_3001_0500_0507_0000.3.sac	Time Processing
M02.1_3001_0506_0510_0000.1.sac	
M02.1_3001_0506_0510_0000.3.sac	51028 7- following build build with a structure of the limit intermediate of the structure
M02.1_3001_0506_0520_0000.1.sac	From T0 0.0000 s
M02.1_3001_0506_0520_0000.2.sac	
M02.1_3001_0506_0520_0000.3.sac	To End OU:06:45.3875
M02.1_3001_0507_0500_0000.2 cac	's 00:01:00 00:02:00 00:
M02.1 3001 0507 0500 0000.3.sac	General Raw signal
M02.1_3001_0507_0514_0000.1.sac	
M02.1_3001_0507_0514_0000.2.sac	
M02.1_3001_0507_0514_0000.3.sac	Length Freq. dep V include 30,001
MU2.1_3001_0510_0506_0000.1.sac	▲
Cround F	Overlap by 5,00 %
Groups	
	Bad sample tolerance 0.00 s.
circle+triangle 10stations large	
- circle1_7stations_8meters	
circle2_6stations_16meters	Bad sample threshold 99 % 🗘
circle3_6stations_41,5meters	
	Anti-triagering on raw signal
	lest at 1,00 Hz C Hz C
	Load parameters Stop Start
	<
	Et cippele. Et files, free sector 252, 112 Mt.
	or signals, or nies, nee cache 202.112 MD

7

Using Ambient Vibration Array Techniques for Site Characterisation

- Set processing parameters - Set name of output file (.max extension)

	🔛 Graphic - circle	2_6stations_16meters			📓 FK toolbox	
	51004 Z-	\$\$ \$	d an an hi fan di apar ar san di di an in 1900 an di 1900 an an		Time Processing	
	51008 Z-			****	Frequency sampling	
Fmin=1 Hz	51009 Z— ++\$\$+\$	±#++++++++++++++++++++++++++++++++++++	şean <mark>h beşteatı dee</mark> anı dı a - \$teen i tadıj-de yo \$teenis at	• \$ ++ += \$\$ +	From 1,00 Hz to Step Log Vumber of sam	0 20,00 Hz 🗘
Fmax=20 Hz	51011 Z-	***	dan di feadach agus sean a' dhana cafar a ta ni a' dahar da at	194-2 + 24	- FK gridding	
Nb samples = 50	51028 Z	<mark>₩ 1</mark> -94 -> 141 140 14141	ours frimstafe over et til en ander frei i eletter ander	nels 4 n	Grid step 0,0350 rad/m ♀ v mi	n 100,00 m/s 📚
Grid_step=	51031 Z	#####################################	• • • • • • • • • • • • • • • • • • •	• \$*:\$†:···₽₩ 00:06:00	Power spectrum maxima Maximum number 1	
0.035 rad/m	🖃 Output .max file	2		?	Absolute th. 0,000	Relative th. 0,00 % 📚
Grid ciza-	Look in: 🛅 E:\v	cornou\TEACHING\Sesarray_Bangalore2007\EXERCIS	5\$\FK\ex01\Resul 🔽 🗿 🧿 🧭 🍠	: =	Output file 007/EXERCISES/FK/ext	01/Results\toto.max
Griu_Size-	My Computer	Name	A Size Type D	ate Modifi		
0.8 rad/m	📁 cornou	FK_circle1_7stations_8meters.max FK_circle1_7stations_8meters_0017.max FK_circle2_6stations_16meters.max	245 KB max File 25 245 KB max File 25 245 KB max File 25 245 KB max File 25	5/11/2007 5/11/2007 5/11/2007		
Vmin=100 m/s		FK_circle2_6stations_16meters_0017.max toto.max	245 KB max File 25 245 KB max File 27	5/11/2007 7/11/2007	Load parameters	Stop Start
		٠		>		
	File name: FK_circ	e2_6stations_16meters.max		5ave		
	Files of type: FK max	file (*.max)	v C	ancel		

Geopsy - E:\cornou\TEACHING\Sesarray_Bangalore2007\EXERCISES\FK\ex01\M21_array_circles.gpy File View Windo Browse FK results for all frequency bands and 1 time windows ('Test' button) Files ₽× 🔛 Graphic - circl All signals Temporary signa 51004 Z preserve and the second property of the second propertyAll files Temporary files 51008 Z-logonover and a strange and ansalanda-milleren William-andre-medice-bille Permanent files M02.1_3001_05 anamina and a second 51009 Z-M02.1_3001_05 M02.1_3001_05 ------51011 Z-📓 FK toolbox M02.1 3001 05 M02.1 3001 05 www.www.men.www.www.www.www.www.www.www.www.www. 51028.7-M02.1_3001_05 Time Processing M02.1_3001_05 51031 Zan executed the male of the male of the second of the second of the M02.1 3001 05 Time limits M02.1_3001_05 00:01:50 00:02:00 M02.1 3001 05 0.0000 s From ITO. M02.1_3001_05 < M02.1 3001 05 00:06:45.3875 End То M02.1 3001 05 M02.1_3001_05 General Raw signal M02.1_3001_05 M02.1 3001 05 0.2 M02.1_3001_05 💙 Wave number Y (rad/m) 0.0 include 30,00 T \$ Length Freq. dep 🗸 < 1 > ₽× Groups Overlap by 5,00 % <u>`</u>-/ 0.0all circle+tri.. Bad sample tolerance 0,00 s. circle1 7. circle2 6.. circle3_6. -0.2-Bad sample threshold 99 % 🗘 Anti-triggering on raw signal -0.2 0.2 0.0 0.1 -0.1 Wave number X (rad/m) < Test at 4,08 Hz 💲 Hz 🔇 > Time window < \$ k 0,08 rad/m \$ v 339,00 m/s Propagation towards 326.7 counted from North Load parameters at k=0.336 rad/m, v=76 m/s or s=0.0131 s/m Stop Start >

9

The FK time windows browser allows to provide information on the noise wave field structure.

In this example, the azimuth of the most energetic arrivals is varying from time to time: noise sources are thus spatially randomly distributed.

Directionality of noise sources can be useful/necessary when interpreting dispersion curve estimates.

ΙΤΣΑΚ	Using Ambien for S	t Vibration Array Techniques Site Characterisation	
	FK results	s: output .max and .log files	
MINGW 32:/e/corr cornou@LGIT-1229 ES/FK/ex01/Resul \$ 1s FK_circle2_ FK_circle2_6stat FK_circle2_6stat MINGW 32:/e/corn cornou@LGIT-1229 ES/FK/ex01/Resul \$ less FK_circle	nou/TEACHING/Sesarray_Bangalore2007/EXE / /e/cornou/TEACHING/Sesarray_Banga ts 6stations_16meters.* ions_16meters.log ions_16meters.max nou/TEACHING/Sesarray_Bangalore2007/EXE /e/cornou/TEACHING/Sesarray_Banga ts 2_6stations_16meters.max[]	RCISES/FK Image: Constraint of the second start of the se	•mblance be
		ampow 0 1 0.829805 16.467 73.533 0.720848 -57.6781 30.0125 1 0.959312 279.914 170.086 0.878759 -52.5059	
The output start cfreq slow	columns are: starting time (s) center frequency (Hz) slowness (s/m)	60.025 1 2.72924 259.757 190.243 0.625953 -60.4831 90.0375 1 0.542245 326.81 123.19 0.888618 -58.2561 120.05 1 0.829619 36.809 53.191 0.649696 -63.9876 150.063 1 1.5958 156.292 293.708 0.758928 -60.1918 180.075 1 0.991335 9.17086 80.8291 0.821155 -62.6515 210.088 1 1.21758 65.1324 24.8676 0.766642 -59.5914 240.1 1 2.11548 324.673 125.327 0.894959 -59.1921 270.113 1 1.15502 13.7 76.3 0.65543 -61.9761 300.125 1 0.407093 160.9 289.1 0.94574 -56.3375 330.138 1 1.29649 228.905 221.095 0.8181 -60.3799	
Baz math-phi array-out array-out	backazimuth (radian) azimuth (radian) semblance beampower	360.15 1 2.13867 358.877 91.1229 0.850065 -58.5761 0 1.06304 1.29124 158.759 291.241 0.602574 -59.2413 28.2275 1.06304 0.826952 260.886 189.114 0.943489 -51.03 56.455 1.06304 9.99999 328.434 121.566 0.43589 -62.9523 84.6825 1.06304 0.303693 328.735 121.265 0.928455 -57.19 112.91 1.06304 0.885679 26.2076 63.7924 0.890801 -59.149 141.138 1.06304 1.19067 191.331 258.669 0.77391 -65.3658 169.365 1.06304 1.30636 81.5274 8.4726 0.855961 -59.4472 197.593 1.06304 1.92692 283 782 166 218 0.873034 -58.2451	78 99
		:0	_

🔎 MINGW32:/e/cornou/TEACHING/Sesarray_Bangalore2007/EXERCISES/FK... 📮 🗖 cornou@LGIT-1229 /e/cornou/TEACHING/Sesarray_Bangalore2007/EXERCIS ES/FK/ex01/Results \$ less FK circle2 6stations 16meters.log 🖗 MINGW 32:/e/cornou/TEACHING/Sesarray_Bangalore 2007/EXERCISES/FK/ex... RAW LTA (s) = 30 RAW MIN SLTA = 0.2 RAW MAX SLTA = 2.5 MINIMUM FREQUENCY = 1 MAXIMUM FREQUENCY = 20 INVERSED FREQUENCY = nSAMPLES NUMBER FREQUENCY = 50 SAMPLING TYPE FREQUENCY (0=log, 1=linear)= 0 FROM TIME TYPE = 1FROM TIME TEXT = 0.0000 s TO TIME TYPE = 1TO TIME TEXT = 00:06:45.3875 MIN K = 0.035MAX K = 0.8MIN V = 100 FREQ BAND WIDTH = 0.1N MAXIMA = 1 OUTPUT FILE = E:\cornou\TEACHING\Sesarray_Bangalore2007\EXERCISES\FK\ ex01\Results\FK circle2 6stations 16meters.max ### End Parameters ### ### Process Log ### Frequency 1/50 1 Min Window length 30 seconds Max Window length 30 seconds

13 Time windows Frequency 2/50 1.06304 Min Window length 28.2208 seconds Max Window length 28.2208 seconds 14 Time windows Frequency 3/50 1.13006 Min Window length 26.5472 seconds Max Window length 26.5472 seconds 15 Time windows Frequency 4/50 1.20131 Min Window length 24.9727 seconds :0

🛛 max2curve - FK - E:\cornou\TEACHING\Sesarray_Bangalore2007\EXERCISES\FK\ex01\Results\FK_circle2_6station... 📮 🗖 🗙

(1) (2 (3

Using Ambient Vibration Array Techniques for Site Characterisation

Using Ambient Vibration Array Techniques for Site Characterisation How to hide mean curve ?

🗖 max2curve - FK - E:\cornou\TEACHING\Sesarray_Bangalore2007\EXERCISES\FK\ex01\Results\FK_circle2_6station... 📘 🗖 🔀

	Frequency	Period	Valid	Average	Std dev	Weight	^	-	4.1 1 2 3 1
	1	1	•	0,0013	0,0006	12	=		1000
3	1,06304	0,94		0,0019	0,0024	13	4	-	1.000
3	1,13006	0,88		0,0012	0,0005	14			
	1,20131	0,83		0,0011	0,0004	15		3	
	1,27705	0,78	>	0,0010	0,0002	10		0.004-	10,000
	1,35756	0,73		0,0010	0,0003	9			- 195-si
	1,44314	0,69	•	0,0008	0,0002	6		- 1 🔎	
	1,53413	0,65	V	0,0008	0,0003	6		0.002	
ř.	1,63085	0,61		0,0006	0,0001	5			- 1

Using Ambient Vibration Array Techniques for Site Characterisation How to hide histograms ?

F	G	Fraph properties		? 🔀	e2007\EXERCISES\FK\ex01\Results\FK_circle2_6station 🔳 🗖 🔀
	G	eneral Layers	Palette Grid Lines		0.010
		Layer type	Opacity		
	1	IrregularGrid2DPlot),00 🇘		
	2	DynXYColorLines	1		
	-				
					<u>€</u> 0.006-
					° 1 ////\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
					0.002
					2 4 6 8 10 2 Frequency (Hz)
			OK	Cancel	Close

🔲 max2curve - FK - E:\cornou\TEACHING\Sesarray_Bangalore2007\EXERCISES\FK\ex01\Results\FK_circle2_6station... 📘 🗖 🔀

Actions button for curves: save / remove / resample / cut / adjust **Note:** applies to selected curve only (there may be more than one!)

🔲 max2curve - FK - E:\cornou\TEACHING\Sesarray_Bangalore2007\EXERCISES\FK\ex01\Results\FK_circle2_6station... 📘 🗖 🔀

1 1 ✓ 0,0013 0,0006 12 2 1,06304 0,94 ✓ 0,0019 0,0024 13 3 1,13006 0,88 ✓ 0,00112 0,0005 14 + 1,20131 0,83 ✓ 0,00011 0,0004 15	M
2 1,06304 0,94 ✓ 0,0019 0,0024 13 3 1,13006 0,88 ✓ 0,0012 0,0005 14 4 1,20131 0,83 ✓ 0,00014 15	1 Y K
3 1,13006 0,88 ✓ 0,00012 0,0005 14 + 1,20131 0,83 ✓ 0,00011 0,0004 15	
∔ 1,20131 0,83 🗹 0,0011 0,0004 15	
	T-1
5 1,27705 0,78 I の 0,0010 0,0002 10 0.004-	
5 1,35756 0,73 🗹 0,0010 0,0003 9	
7 1,44314 0,69 🗹 0,0008 0,0002 6	100
3 1,53413 0,65 🗹 0,0008 0,0003 6 0.002	
9 1,63085 0,61 🗹 0,0006 0,0001 5	1.1

Curve identification (number/name)

Mean +/- std (by default)

20

How to re-calculate mean/median or mode after editing?

Usage of the "grid statistics" window

Gaussian distribution computed from the observed mean and standard deviation

The grid statistics toolbox can be used for 'cleaning' the histograms from outliers. Also useful for separating individual modes.

🗖 max2curve - FK - E:\cornou\TEACHING\Sesarray_Bangalore2007\EXERCISES\FK\ex01\Results\FK_cir... 📮 🗖 🔀

ΙΤΣΑΚ

Above 4 Hz, mean curve is not representative of actual distribution which fits better the true dispersion curve

Below 4 Hz, phase velocities are overestimated: is it related to array response ???

Computing array response with build_array

~/data/EXERCISES_FK/EX01/coordinates/circle2_6stations_16meters 🗶 Build array _ 🗆 X File Edit Insert Format Stations Windows Help Load coordinates Text Save coordinates Ctrl+S ----- **B**X Ctrl+N New 100 100 ? 🗆 🗙 Open Ctrl+O Open coordinate file Ctrl+S Save 🚰 /home/mwathele/array_course/200707-algiers/DATA/EXERCISES_FK/ex01/coordir 👻 🔇 Look in: 11 1 Save As... circle+triangle 10stations large response circle3 6stations 41meters.layer Computer Ctrl+P Preferences circle1 7stations 8meters mwathele circle2 6stations 16meters Ctrl+P Print usb circle3 6stations 41.5meters Ctrl+E Export image devel response circle+triangle 10stations large.layer response circle1 7stations 8meters.layer Ctrl+Q Quit response circle2 6stations 16meters.layer Pairs Min Max Color circle2 6stations 16meters File name: Open Files of type: Coordinate file (*) Cancel Ŧ Total number of couples in rings Π Session Edit View Bookmarks Settings Help Add Optimize Remove mwathele@sirac ~ \$ build array

🔳 Shell

Shell No. 2

Load

Save

4

December 06th-12th 2008, Thess

26

•

×_

After loading coordinates - set some array name

Viewing array geometry

🗙 Build array		
<u>File Edit Insert Format Stations Windows Help</u>		
Save make-up Ctrl+U	Text	
<u>R</u> estore make-up Ctrl+Y		
Object properties	51028 51	10:
Axis properties	- 0	-
2 S1008		0.0000000008-
3 S1009 Graph content properties	2050-	2
4 S1011 Set limits		5
5 S1028 Set background map		0.0000000004-
6 S1031 2056 2056 0	S1008 S1009 S1	10]
	2040- ° ° 2030- - S1004 - 2030 2040 2050 - X (m)	• 0.0000000000 -0.0000(
Set limits of plots automatically		

For better viewing geometries (array + coarray) remove names from plot using property editor

Stations

Using Ambient Vibration Array Techniques for Site Characterisation

Compute theoretical array response for the given station geometry

Add		
Circle	X Build array	×
Car <u>t</u> esian	Elle Edit Insert Format Stations Windows Help	
Remove	📋 💋 🕞 🗁 🛷 🗞 🎉 🗊 🛐 🔚 🗠 🔜 🎆 📼	
<u>C</u> lear	Stations (PIX)	
Set station <u>n</u> ames	Station name X Y Z Array Log 20- P	
Set <u>a</u> rray names	1 10015 0 0 0 A	
Array list		
Set coordinates	3 10231 17.02 Array response - transfer function	
Recalculate	4 10240 10 Select an array	
Rotate 2	5 10245 3.4e-0 0- e e	
Translate	20 -10 0 10 20 X (m)	
Palativa positions	8 10266 1.7e-C	
Theoretical response	Diseasting old sampling	
Circulate arresponse 2		
Simulate response	From 0.50 Hz to 15.00 Hz 30	
	Step Log V Number of samples 100 V Step a B	
	Grid definition	
	Min Max Pairs k max factor 3 0 0 0 0 0	
	QK Cancel X (m)	
	Total number of couples in rings	
	Optimize Add Remove	
	Load Save	

Where is k_{max} ?

32

What do we mean by k_{max}? - simulate array response For arbitrary plane wave arrivals (including superposition)

t	Stations Windows Help	X Build array	- 0 ×
	Add	Eile Edit Insert Format Stations Windows Help	
	Ci <u>r</u> cle		
	Car <u>t</u> esian		
	<u>R</u> emove		
	<u>C</u> lear	1 10015 0 0 0 A	
20	Set station <u>n</u> ames	2 10022 20 0 0 A	
	Set <u>a</u> rray names	3 10231 17.020 Array response - trai ? X	
	Array list	4 10240 10 Select an array	
	Set c <u>o</u> ordinates	5 10245 3.4e-C	
	Recalculate	6 10252 -9.1 20 -10 0 10 20	
	Rotate	7 10261 -17.02 X (m)	
	Translate	8 10266 1.7e-0	
	Relative positions	-Grid definition	
	Theoretical response	k max factor 3 30	
	Simulate response		
		Min Max Pairs Color 0 0 0 0	
		= 1 1	
		X (m)	
		Total number of couples in rings	
		Optimize Add Remove	
		Load Save	
			-
		December 06th-12th 2008, Thessaloniki, Greece	

What do we mean by k_{max}? - simulate array response For arbitrary plane wave arrivals (including superposition)

play around and observe ...

max2curve - FK - E:\cornou\TEACHING\Sesarray_Bangalore2007\EXERCISES\FK\ex0...

🗖 max2curve - FK - E:\cornou\TEACHING\Sesarray_Bangalore2007\EXERCISES\FK\ex0... 📘 🗖 🔀

December 06th-12th 2008, Thessaloniki, Greece

Do the same exercise using the two other predefined arrays

Circle3_6stations_41.5meters

Grid_step = 0.015 rad/m Grid_size = 0.34 rad/m Vmin = 100 m/s; window length = 30 T

Circle1_7stations_8meters

Grid_step = 0.065 rad/m Grid_size = 1.6 rad/m Vmin = 100 m/s; window length = 30 T

Using Ambier Stripnotary Array Techniques for Site Characterisation

• Larger (smaller) aperture, better resolution at LF (HF)

• In this example, smallest aperture array provides phase velocities deviating (overestimation) than true ones.

• Histograms should be cleaned in order to remove outliers or estimates which can be clearly attributed to aliasing effects.

FK histograms: outlier removal

Select the slowness band you want to keep (pick band)

Press on "reject" to remove the samples outside selected band from the distribution

Computation of new mean/median/mode curve

The new mean curve appears as Curve #2

6

Cut curve in order to keep estimates only for reliable f.-band

irve Curs	data <	Cut curve	
	ancy	Scale type	
1	4	Minimum	
2	4,08026	Maximum	10
3	4,3375	Irequency	
4	4,61095		
5	4,90165	ОК	Cancel
6	5,21068		
7	5,53918	0,18 🗹 0,0051 0,0005	0.002
8	5,8884	0,16 🗹 0,0053 0,0006	S. 💜 🛸
<			
Nam	e Curve ;	#2 Visible Actions ▼	2 4 6 8 10 Exequency (Hz)

Saving the dispersion curve

d Clear Legend	Average -		
Save curve			? ×
Look in: 🛅 E:	cornou\TEACHING\Sesarray_Bangalore2007\EXERC	ISES\FK\ex01\Resul 🖌 😋 🕥 🗿	🤊 🗉 🗉 🚺
My Computer	Name	A Size Type	Date Mc 📥
Cornou	FK_circle1_7stations_8meters.log	7 KB log File	27/11/2
-	FK_circle1_7stations_8meters.max	245 KB max Fil	e 27/11/2
	FK_circle2_6stations_16meters.log	7 KB log File	27/11/2
	FK_circle2_6stations_16meters.max	245 KB max Fil	e 27/11/2
	FK circle3 6stations 41meters.log	7 KB log File	27/11/2
File name: FK_cire	le2_6stations_16meters.dc		Save
		1 (1977)	
Files of type: 4 colur	nns tile(*)	M	Cancel
0,00000 0,10	0,0001 0,0000		
	0,002		
5,8884 0,16 🗹	0,0053 0,0006		
me Curve #2	Visible Actions 🔻	2 4	6 8 10
		Frequency	(Hz)
	Saua		Cl

Some issues on *f-k* processing as implemented in sesarray

- What reasonable values should be chosen for fk analysis ? (k_{min}, k_{max}, window length T)
- How is the fk gridding performed ?

adaptive grid search technique (from coarse to fine grid) Important: What initial *grid_step* to choose ?

Peak refinement until numerical relative precision of 10⁻⁵ in wavenumber

 $grid_step < k_{min}/4$

wavenumber

December 06th-12th 2008, Thessaloniki, Greece

49

What grid_size to choose ?

Decemb Grid_size > $k_{max}/2$ ki, Greece

50

50 T

What *window_length* to choose ?

30 T

10 T

Window_length T: 20 - 50 T (and even more!)

Recommended parameters

• grid_step < k_{min}/4 (maximum value) (< k_{min}/20 for hrfk!)

• grid_size > $k_{max}/2$ ($\rightarrow 2 k_{max}$)

• T = 20 - 50 seconds (and even more !)

And do tests !!!

Don't feel confident yet?

* So, we have to practice 🙂

Here is another (very nice) data set for you:

~/data/EXERCISES_FK/EX03/*.gpy

However, this time you won't be given the processing parameters ©©©

- Compute array response for full array
- Process all station together look at max-file
- Select small and large array (eventually also a middle size one) - compute array responses
- Process individual arrays then combine max files and compare to results from (2)

Which result do you like more? This one

or this one ... ?

