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What Signal? & Why?

« Sound waves =2 High frequency, hearable range (20 Hz - 20,000 Hz)
« Electricity = (50 Hz - 60 Hz)
« Seismic Signals - (0.07 Hz to 50 Hz)

>Question #1: How would you measure the damage on a structure
after a strong ground motion?

>Question #2: What does AvgSa(T) mean in the time domain
physically?




Fourier Analysis

Time signals can be decomposed in to series of orthogonal cosine and
sine functions with finite amplitudes and frequencies. The Fourier
Analysis is the mathematical operation done for crossing between time
and frequency domains. By taking the Fourier transform, a time signal
can be transferred in to frequency space, interpreted, processed and
reverted back to time domain without information loss.

f f eXp —I2T[Vt)d’[ Forward Fourier Transform

F eXp IZT[Vt)dt Inverse Fourier Transform

Recall! > Euler’s Identity: e'?™ = cosm + isinT




Fourier Analysis

Important Properties of the Fourier Transform:

e Linearity: F()\ f +Mg)=7\ F(f)+MF(g)=7\F((D)+MF ((D)
« Integration: F[f'(t)]Zi(x).F((D) > F[f(n)(t)]=<i(ﬂ)n.|:<(1)>
ccomontions  F[fxg]=F[ [ f(t)g(t—1)dt}=F(0).G(v)

. Time Reversal: F [ f (_t)]: F (-(1))




Fourier Amplitude
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Boxcar Dirac
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Convolution Example

« Lets imagine the convolution of two boxcars..
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« Finally imagine a boxcar and an asymmetric function..
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Fourier Amplitude

Phase

Gibb’s Phenomenon
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Discrete Signals
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So far, we were considering
continuous (analytical) signals
which were completely defined
over a finite or infinite time
domain.

However, computers work with
signals defined by discrete
data points (also called as
sample points taken from the
continuous signal).

TAYAY.




Nyquist Theorem

Nyquist theorem draws attention to a
fundamental property of the discrete
signals. It 1is only possible to

properly identify the frequency of a
discrete signal if the sampling
frequency is higher than the Nyquist
frequency.

Sampling Frequency Nyquist Frequency

fsamp. = A_t > fnq. T,

In practice: Minimum 10 points per cycle
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Frequency resolution of the
signal is increased by
increasing the signal
duration. This is often done
by adding zeros at the end of
the signal.

Frequency Resolution:

1
A * N

Af=




Nolise

The high frequency distortion
due to the environmental
affects in the signal 1s often
considered as noise.

Signal to Noise Ratio (SNR)

Amplitude of the Signal
SNR =

Amplitude of Noise

Repeating the recording several
and stacking them together is a
way to increase SNR.
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Moving Kernels

Moving kernel 1is an averaging time

window sweeping the signal from start (a)Neisysignal:
to end. Averaging the signal in local

portions creates a “smoothed” signal,

less distorted by noise.

The smoothed signhal 1is obtained by
the formula

() Central kernel:
p=m
- m-—1
Vi = z Kp.x(l— > )+p
p=1
Where Kernel length m, the weights K,
and x is the noisy signal (¢) Even kemel:
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Filtering

In frequency domain, a filter is
a window that is passing a band
of frequency and blocking the
rest. Filters are applied as a
point by point multiplication
with the amplitude and phase

spectrum of the original signal.

Low Pass: Passes only the frequencies
lower than the filter frequency.

High Pass: Passes only the
frequencies higher than the filter
frequency.

Band Pass: Passes only the

frequencies in between the high and
low frequency limits that are bounded
by the filter.
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Ringing Artefact




Butterworth Filter
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Butterworth filter 1is a 1low pass
filter with a cut off frequency of w,.

15t order Transfer function:
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Baseline correction is needed when the
signal is off the axis. Whether this
is due to the instrument or the data,
an upward shifted horizontal axis with
a constant, may introduce significant
errors especially after integration.

To remove the baseline, the mean of
the signhal is computed along the time
domain and a linear/quadratic function
is fitted. Then the fitted function is
subtracted from the amplitude of the
original signal.




Van Nuys Building

Fourier Spectrum of the Signal Recorded at the Roof
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PEER Testbed, 7 Storey Hotel in Van Nuys, California




Van Nuys Building

Fourier Spectrum of the Signal Recorded at the Roof
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Used of the in structural health monitoring!




Further Reading

). Carlos Santamarina | Dante Fratta

e Also as a reference for this tutorial

notes: Discrete Signals
and Inverse Problems

A Introducton

« Santamarina, J.C. & Fratta, D. (2005) Discrete
Signals and Inverse Problems. An Introduction
for Engineers and Scientists. Published by John
Wiley & Sons, Ltd, West Sussex, England
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