
APPENDIX 

A 

FOURIER 
TRANSFORM 

This appendix provides a brief review of the Fourier transform, and its properties, for 
functions of one and two variables. 

A.I. One-Dimensional Fourier Transform 

The harmonic function F exp(j2rvt) plays an important role in science and engineer- 
ing. It has frequency v and complex amplitude F. Its real part IFIcos(2~vt + arg{F}) 
is a cosine function with amplitude jF( and phase arg{F}. The variable t usually 
represents time; the frequency v has units of cycles/s or Hz. The harmonic function is 
regarded as a building block from which other functions may be obtained by a simple 
superposition. 

In accordance with the Fourier theorem, a complex-valued function f(t), satisfying 
some rather unrestrictive conditions, may be decomposed as a superposition integral of 
harmonic functions of different frequencies and complex amplitudes, 

f(t) = lrn F(v) exp( j27rvt) dv. 
-aJ 

(Ad-1) 
Inverse 

I I Fourier Transform 

The component with frequency v has a complex amplitude F(v) given by 

1 F(v) = l_mmf(f) exp( -Qrvt) dt. 1 Fourier TEi;;i 

F(v) is termed the Fourier transform of f(t), and f(t > is the inverse Fourier transform 
of F(v). The functions f(t) and J’(v) form a Fourier transform pair; if one is known, 
the other may be determined. 

In this book we adopt the convention that exp( j2m-vt) represents positive frequency, 
whereas exp( -j2rvt) is a harmonic function representing negative frequency. The 
opposite convention is used by some authors who define the Fourier transform in 
(A.l-2) with a positive sign in the exponent, and use a negative sign in the exponent of 
the inverse Fourier transform (A.l-1). 
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In communication theory, the functions f(t) and F(v) represent a signal, with f(t) 
its time-domain representation and F(v) its frequency-domain representation. The 
squared-absolute value I f( t )I 2 is called the signal power, and IF(v)1 2 is the energy 
spectral density. If IF( extends over a wide frequency range, the signal is said to 
have a wide bandwidth. 

Properties of the Fourier Transform 
Some important properties of the Fourier transform are provided below. These 
properties can be proved by direct application of the definitions (A.l-1) and (A.l-2) 
(see any of the books in the reading list). 

. Linearity. The Fourier 
Fourier transforms. 

transform of the sum of two functions is the sum of their 

. Scaling. If f(t) has a Fourier transform F(v), and 7 is a real scaling factor, then 
f(t/~) has a Fourier transform l~lF(~v). This means that if f(t) is scaled by a 
factor 7, its Fourier transform is scaled by a factor l/7. For example, if T > 1, 
then f(t/~) is a stretched version of f(t), whereas F(W) is a compressed version 
of F(V). The Fourier transform of f( - t) is F( - v). 

9 Time Translation. If f(t) has a Fourier transform F(v), the Fourier transform of 
f(t - 7) is exp(-j2rVr)F(V). Thus delay by time 7 is equivalent to multiplica- 
tion of the Fourier transform by a phase factor exp( - j2rTTvT). 

n Frequency Translation. If F(v) is the Fourier transform of f(t), the Fourier 
transform of f(t)exp(j2rvat) is F( v - ~a). Thus multiplication by a harmonic 
function of frequency vO is equivalent to shifting the Fourier transform to a 
higher frequency vo. 

. Symmetry. If f(t) is real, then F(v) has Hermitian symmetry [i.e., F(-v) = 
F*(v)]. If f(t) is real and symmetric, then F(v) is also real and symmetric. 

9 Convolution Theorem. If the Fourier transforms of f&t) and f2(t) are F,(v) and 
F2(v), respectively, the inverse Fourier transform of the product 

F(v) = F,WF2(59 (A.1 -3) 

is 

f(t) = Irn fl(df2(t - 4 d7. 
-cc 

(A.1 -4) 
Convolution 

The operation defined in (A.l-4) is known as the convolution of fl(t) with f2(t). 

Convolution in the time domain is therefore equivalent to multiplication in the 
Fourier domain. 

. Correlation Theorem. The correlation between two complex functions is defined 

f(t) = /m f?wf2(t + 4 dT* 
--00 

(A.1 -5) 
Correlation 

The Fourier transforms of fl(t), f2(t), and f(t) are related by 

F(v) = Fc(v)F2(v). (A.1 -6) 
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n Parseual’s Theorem. The signal energy, which is the integral of the signal power 
lf(t)j2, equals the integral of the energy spectral density IF(v)j2, so that 

(A.1 -7) 
Parseval’s Theorem 

TABLE A.1 -1 Selected Functions and Their Fourier Transforms 

Function pr, FW 

Impulse A- 6(t) 1 
t 

Rectangular JkL 

:- Y 

m(t) sine(v) 

1 0 1 t -1 0 1 2 ” -- ? 

Exponential” 2. - 2 ILL- 

Gaussian 

iAL- 0 1 t exp(-ItI) 1+(2nv)* 0 1 Y 

exp(-nt*) exp( -d) i 
-1 0 1 t -1 0 1 ” 

Chirpb exp( jd*) &4exp( - jnv2) 

Z$iZ3sM~2s+1 .(I(I+ 5 6(t-n) 
sin(Mnv) 
- 

012 t n=-S sin(w) 

Infinite sum 
of impulses ~ 2 aft-n) 2 6(v-n) 

012 t “P-m n=-m ‘012 Y 

‘The double-sided exponential function is shown. The Fourier transform of the single-sided exponen- 
tial, f(t) = exp(-t) with t 2 0, is F(v) = l/[l + j2rv]. Its magnitude is l/[l + (27~v)*]‘/*. 
‘The functions cos(rt*) and cos(rv*) are shown. The function sin(7rrt*) is shown in Fig. 4.3-6. 
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Examples 
The Fourier transforms of some important functions used in this book are listed in 
Table A.l-1. By use of the properties of linearity, scaling, delay, and frequency 
translation, the Fourier transforms of other functions may be readily obtained. In this 
table: 

n rect(t) = 1 for It1 I $, and is 0 elsewhere, i.e., it is a pulse of unit height and unit 
width centered about t = 0. 

n 8(t) is the impulse function (Dirac delta function), defined as s(t) = 
lim (y+m cy rect(at). It is the limit of a rectangular pulse of unit area as its width 
approaches zero (so that its height approaches infinity). 

. sine(t) = sin(rt)/(rt) is a symmetric function with a peak value of 1.0 at t = 0 
and zeros at t = + 1, + 2,. . . . 

A.2. Time Duration and Spectral Width 

It is often useful to have a measure of the width of a function. The width of a function 
of time f(t) is its time duration and the width of its Fourier transform F(v) is its 
spectral width (or bandwidth). Since there is no unique definition for the width, a 
plethora of definitions are in use. All definitions, however, share the property that the 
spectral width is inversely proportional to the temporal width, in accordance with the 
scaling property of the Fourier transform. The following definitions are used at different 
places in this book. 

The Root-Mean-Square Width 
The root-mean-square (rms) width a; of a nonnegative real function f(t) is defined by 

lrn (t - i)2f(t) dt /m tf(t) dt 
Ut - 2- -wIwf(t)dt ’ wherei= jzwf(t)dt * 

-w -w 

(A.2-1) 

If f(t) represents a mass distribution (t representing position), then i represents 
the centroid and a, the radius of gyration. If f(t) is a probability density function, 
these quantities represent the mean and standard deviation, respectively. As an 
example, the Gaussian function f(t) = exp( - t2/2ut2) has an rrns width a,. Its Fourier 
transform is given by F(v) = (l/ 6~~) exp( - v2/2a,2), where 

1 
-- 

u, - 27ru, 
(A.2-2) 

is the rms spectral width. 
This definition is not appropriate for functions with negative or complex values. For 

such functions the rms width of the squared-absolute value 1 f(t>12 is used, 

lw (t - i)21 f(t)12 dt 
2= --OO 

lrn tlf(t)12 dt 
a; 

lrn If(t)12dt ’ wherei = T,f(t)l2d’ - 
--m -co 

We call this version of a, the power-rms width. 
With the help of the Schwarz inequality, it can be shown that the product of the 

power rms widths of an arbitrary function f(t) and its Fourier transform F(v) must be 
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greater than 1/47~, 

(A.2-3) 
Duration -Bandwidth 
Reciprocity Relation 

where the spectral width a, is defined by 

a2 = 
/m (v - iq21F(v)12dv 
-cn 

/* VI F(v) I2 dv 

v 
Irn IF(v)12dv ’ wherev= /YIP(Y)12dv ’ 

--00 --to 

Thus the time duration and the spectral width cannot simultaneously be made 
arbitrarily small. 

The Gaussian function f(t) = exp( - t 2/4ct), for example, has a power-rms width 
a,. Its Fourier transform is also a Gaussian function, F(v) = (1/2&a,) exp( - u2/4cV2), 
with power-rms width 

1 

*=-zzq. l.J (A.2-4) 

Since ataV = 1/47r, the Gaussian function has the minimum permissible value of the 
duration-bandwidth product. In terms of the angular frequency w = 27rv, 

uto-” 2 ;. (A.2-5) 

If the variables t and w, which usually describe time and angular frequency (rad/s), 
are replaced with the position variable x and the spatial angular frequency k (rad/m), 
respectively, then (A.2-5) translates to 

UxUk 2 ;. (~.2-6) 

In quantum mechanics, the position x of a particle is described by the wavefunction 
$(x), and the wavenumber k is described by a function 4(k) which is the Fourier 
transform of e/(x>. The uncertainties of x and k are the rms widths of the probability 
densities /+(x)12 and l+(k>12, respectively, so that a; and uk are interpreted as the 
uncertainties of position and wavenumber. Since the particle momentum is p = Ak 
(where A = h/2r and h is Planck’s constant), the position-momentum uncertainty 
product satisfies the inequality 

(A.2-7) 

Heisenberg 
Uncertainty Relation 

which is known as the Heisenberg uncertainty relation. 

The Power-Equivalent Width 
The power-equivalent width of a signal f(t) is the signal energy divided by the peak 
signal power. If f(t) has its peak value at t = 0, for example, then the power-equiv- 
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alent width is 

/ 

O3 IfW2 7-c - 
-,IfuN2 dt* 

(~.2-8) 

The double-sided exponential function f (t > = exp( - It l/r), for example, has a 
power-equivalent width T, as does the Gaussian function f(t) = exp(-.rrt2/2T2). This 
definition is used in Sec. 10.1, where the coherence time of light is defined as the 
power-equivalent width of the complex degree of temporal coherence. 

The power-equivalent spectral width is similarly defined by 

cJg= ~ 

/ 

O3 IP( 
e-m IF(O) I2 du’ 

(A.2-9) 

If f(t) is real, so that 1 F(v)1 2 is symmetric, and if it has its peak value at I/ = 0, the 
power-equivalent spectral width is usually defined as the positive-frequency width, 

B= ~ 

/ 0 

In the case F(v) = ~/(l + j27rv~), for example, 

B=$. 

(A.2-10) 

(A.2-11) 

This definition is used in Sec. 17SA to describe the bandwidth of photodetector 
circuits susceptible to photon and circuit noise (see also Problem 17.55). 

Using Parseval’s theorem (A.l-7) and the relation F(O) = /roof(t) dt, (A.2-10) may 
be written in the form 

(A.24 2) 

where 

(A.2-13) 

is yet another definition of the time duration [the square of the area under f(t) divided 
by the area under f 2(t)]. In this case, the duration-bandwidth product BT = 3. 

The I /e-, Half-Maximum, and 3-dB Widths 
Another type of measure of the width of a function is its duration at a prescribed 
fraction of its maximum value (l/\/z, l/2, l/e, or l/e2, as examples). Either the 
half-width or the full width on both sides of the peak is used. Two commonly 
encountered measures are the full-width at half-maximum (FWHM) and the half-width 
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at l/&-maximum, called the 3-dB width. The following are three important examples: 

. The exponential function f(t) = exp( - t/T) for t 2 0 and f(t) = 0 for t < 0, 
which describes the response of a number of electrical and optical systems, has a 
l/e-maximum width At,,, = r. The magnitude of its Fourier transform F(v) = 
~/(l + j2rrur) has a 3-dB width (half-width at l/&-maximum) 

(A.2-14) 

. The double-sided exponential function f(t) = exp( - (t I/T) has a half-width at 
l/e-maximum At l,e = r. Its Fourier transform F(v) = 27/[1 + (27rv~)~], known 
as the Lorentzian distribution, has a full-width at half-maximum 

Au -1 FWHM - 977 ’ 
(A.2-15) 

and is usually written in the form F(V) = (Av/27r)/[v2 + (Av/~)~] where Au = 
Au iwrrM. The Lorentzian distribution describes the spectrum of certain light 
emissions (see Sec. 12.2D). 

n The Gaussian function f(t) = exp( - t 2/2T2) has a full-width at l/e-maximum 
At l/e = 2&7. Its Fourier transform F(v) = &r exp(-277-2T2v2) has a full- 
width at l/e-maximum 

45 
Av~,~ = - 

7r-r 

and a full-width at half-maximum 

Au 
(21n2)1’2 

FWHM = 7 
77-T 

so that 

Au FwM = (h2)1’2 Av~,~ = 0.833 AZ+,,. 

(A.24 6) 

(A.2-17) 

The Gaussian function is also used to describe the spectrum of certain light 
emissions (see Sec. 12.2D) as well as to describe the spatial distribution of light 
beams (see Sec. 3.1). 

A.3. Two-Dimensional Fourier Transform 

We now consider a function of two variables f(x, y). If x and y represent the 
coordinates of a point in a two-dimensional space, then f (x, y) represents a spatial 
pattern (e.g., the optical field in a given plane). The harmonic function 
F exp[ -j2n(v,x + v,y)] is regarded as a building block from which other functions 
may be composed by superposition. The variables vX and vY represent spatial frequen- 
cies in the x and y directions, respectively. Since x and y have units of length (mm), uX 
and vY have units of cycles/mm, or lines/mm. Examples of two-dimensional harmonic 
functions are illustrated in Fig. A.3-1. 
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Figure A.3-1 The real part ~R’~c0s[2~~,x + 27~~~ + arg{F}] of a two-dimensional harmonic 
function: (a) vx = 0; (b) vY = 0; (c) arbitrary case. For this illustration we have assumed that 
arg{F} = 0 so that dark and white points represent positive and negative values of the function, 
respectively. 

The Fourier theorem may be generalized to functions of two variables. A function 
f(x, y) may be decomposed as a superposition integral of harmonic functions of x 
and Y, 

1 

f( X, y) = (A.3-1) 
-m Inverse 

Fourier 
Transform 

where the coefficients F(vX, vY) are determined by use of the two-dimensional Fourier 
transform 

Our definitions of the two- and one-dimensional Fourier transforms, (A.3-2) and 
(A.l-2) respectively, differ in the sign of the exponent. The choice of this sign is, of 
course, arbitrary, as long as opposite signs are used in the Fourier and inverse Fourier 
transforms. In this book we have adopted the convention that exp(j2rvt) has positive 
temporal frequency v, whereas exp[ -j2r(v,nc + v, y)] has positive spatial frequencies 
vX and vY. We have elected to use different signs m the spatial (two-dimensional) and 
temporal (one-dimensional) cases in order to simplify the notation used in Chap. 4 
(Fourier optics), in which the traveling wave exp( +j2rvt) exp[ - j(k,x + k, y + k,z)] 
has temporal and spatial dependences with opposite signs. 

Propenlies 
The two-dimensional Fourier transform has many properties that are obvious general- 
izations of those of the one-dimensional Fourier transform, and others that are unique 
to the two-dimensional case: 

. Convolution Theorem. If f(x, y) is the two-dimensional convolution of two 
functions fi(x, y) and f2(x, y) with Fourier transforms F1(vX, vY) and F2(vX, v,,), 
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respectively, so that 

n 

fk Y> = lrn Irn fl( x’, y’)f& - X’, y - Y’) &‘dY’, (A.3-3) 
-co -m 

then the Fourier transform of f(x, y) is 

FL v,> = fx% vJF2h v,)* (A.3-4) 

Thus, as in the one-dimensional case, convolution in the space domain is 
equivalent to multiplication in the Fourier domain. 
Separable Functions. If f(x, y) = f,(x)f,(y) is the product of one function of x 
and another of y, then its two-dimensional Fourier transform is a product of one 
function of vX and another of v,,. The two-dimensional Fourier transform of 
f(x, y) is then related to the product of the one-dimensional Fourier transforms 
of f,(x) and f,,(y) by F( vX, v,) = F,(- v,)F,(-- vY). For example, the Fourier 
transform of 6(x - xJS(y - ya), which represents an impulse located at (x,, yc), 
is the harmonic function exp[ j2&,x0 + v, y,)]; and the Fourier transform of 
the Gaussian function exp[ - V( x2 + y 2>] is the Gaussian function exp[ - V( v: + 
v,‘)]; and so on. 

9 Circularly Symmetric Functions. The Fourier transform of a circularly symmetric 
function is also circularly symmetric. For example, the Fourier transform of 

(x2 + y2y2 I 1 

otherwise, 

denoted by the symbol circ(x, y) and known as the circ function, is 

F(v,,v,) = Jh$ > , %J 
VP = v,2 -I- v; ( > l/2 , 

(A.3-5) 

(~~3-6) 

where J, is the Bessel function of order 1. These functions are illustrated in Fig. 
A.3-2. 

fix, y) A 

Figure A.3-2 The circ function and its two-dimensional Fourier transform. 
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