
Frequency Domain
Analysis of Signals
(Discrete Fourier
Transform)

Discrete time signals can be analyzed or decomposed into a series of sines and
cosines. This representation is called the discrete Fourier transform (DFT) of
the signal; it is reversible and no information is lost. The underlies most 
signal processing strategies, facilitates the interpretation of signals, enhances the 
characterizationof systems, and improves the efficiency of algorithms. However,
there are several inherent assumptions and limitations in this transformation. 

Why are sines and cosines selected to analyze signals and systems? There 
are two reasons. First, sines and cosines are orthogonal functions and form a
base for the analysis of signals, as discussed in this chapter. Second, sines and
cosines are for systems; this will be the starting point for
Chapter 6.

5.1 ORTHOGONAL FUNCTIONS - FOURIER SERIES

Two functions are orthogonal in the b] if 

Discrete Signals Inverse Problem C. and D.
2005 John Sons,
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where and are functions with real and imaginary components, indicates
complex conjugate of the function f, and c is any number different than zero. 

Given a sinusoid of circular frequency = its u-th harmonic is another
sinusoid with circular frequency u where u is an integer. Harmonics 
fulfill the orthogonality property; therefore, the following relations hold: 

-

0 2

for u

Invoking Euler's identities (Chapter 2), these equations show that complex expo-
nential~are orthogonal as well (see solved problem at the end of this Chapter):

The integral equation used to determine the orthogonality of two functions is
equivalent to the equation used to determine the value of cross-correlation for
zero time = in continuous time). Hence, orthogonality concepts support 
the utilization of cross-correlation to identify frequency similarity between two 
signals (Chapter 4).

5.1.1 Fourier Series

The orthogonality of harmonics suggests that these functions form a base in the
open interval [0, T[. Then, a continuous periodic with period T 
can be expressed as a linear combination of sinusoids with frequencies that are
multiples of the fundamental circular frequency The summation is known 
as Fourier series. The value at discrete time is

[a,, sin

where the coefficients and are real.
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5.1.2 An Intuitive Preview of Fourier

Imagine N points in the x-t Cartesian coordinates = x,, ..
If a polynomial is least squares fitted through these points = a + bx+

+. . . , we could call the set of coefficients p= [a, b, c, d, .. . the
"polynomial transform of 

Likewise, one can least squares fit the Fourier series (Equation 5.6) to the
signal The set of coefficients a,, b,, b,, a,, b,. . . is called the 
Fourier transform of which is herein denoted with a capital letter. The subset 
made of all a-coefficients is called the "real" part whereas the subset of
b-coefficients is called the "imaginary" part Each subset plotted versus 
the frequency counter u provides important information about the signal 

The u-th value in is the amplitude of the cosine with frequency
that is needed to form the signal

The u-th value in is the amplitude of the sine with frequency 
that is needed to form the signal 

where the fundamental period T as the length of the time window, so that the 
fundamental circular frequency is Figure 5.1 shows a collection of simple
signals and the corresponding real and imaginary parts of their Fourier transform 
obtained by fitting the Fourier series to the signals. The signals are simple 
and Fourier transforms are identified by visual inspection and comparison with
Equation 5.6. A few important observations follow:

A constant signal, = constant for all has no oscillations; therefore, all 
terms for u are null: = and For u =0, = 1, and 
the first real coefficient a,, takes the value of the signal. On the other hand,

= 0, and any value for the first imaginary coefficient could be used;
however, = is typically assumed. For example, fitting the Fourier series 
to = . .. results in .. and =

. . as shown in Figure

The Fourier transform of a single frequency cosine signal is an impulse in 
whereas the transform of a single frequency sine is an impulse in
For example, if a sine signal with amplitude 7 fits three times in the 

time window, then the Fourier transform obtained by fitting Equation 5.6 is
an impulse corresponding to the third harmonic in the imaginary component,

=7 , and .. ] and ..]
as shown in Figure 5.16.

Because the Fourier series is a summation, superposition is implied, and the
cases in Figure and e are readily computed.
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=7 t) truncated
10

-10

Figure 5.1 Simple signals and the corresponding real (cosine) and imaginary (sine)
components of the fittedFourier series. Note that the truncated sinusoidrequires additional 
frequency components to synthesize the signal
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What is the Fourier transform of a signal duration T with a one-cycle sinusoid 
duration shown in Figure A good initial guess is to assume that
will not be zero. Furthermore, there must be other nonzero real and imaginary 
components; otherwise, the sinusoid would be present throughout the duration 
of the signal.

This intuitive preview suggests a robust interpretation of the Fourier transform:
it is curve fitting the signal a series of cosines (real part) and sines (imaginary 
part). However, there are several subtleties. For example, note that the signal
exists from time zero to T, that is T. However, the sinusoids that are
used to fit the signal exist from "the beginning of time till the end of time, all
the time", that is t The implications of discretization are explored 
in the next sections.

5.2 DISCRETE FOURIER A N A A N D SYNTHESIS

There are four types of Fourier time-frequency transforms according to the 
continuous or discrete representation of the information in each domain: 
continuous, continuous-discrete,discrete-continuous, and discrete-discrete.Current
engineeringand science applications invariably involve discrete time and frequency 
representations. Consequently, only the case of discrete-discrete transformation is 
considered.

There is an immediate and most relevant consequence of selecting discrete 
time and frequency representations: The discrete time and frequency Fourier

presumes periodic signals. In other words, any aperiodic signal
with N points . . ., is automatically assumed periodic with fundamental
period T N At. A schematic representation is shown in Figure

5.2.1 Synthesis:The Series

The Fourier series in Equation 5.6 is rewritten to accommodate the discrete nature 
of the signals in time and frequency domains, and the inherent periodicity associ-
ated with the discrete representation. The sequence of changes is documented next.

Change #1:

Sines and cosines are replaced for complex exponentials by means of Euler's
identities with complex coefficients (Chapter 2):
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Assumed Original
periodicity signal................................. .................... ...............

r - - - ,
,

J

Figure 5.2 The discrete time and frequency Fourier transform assumes periodicity. 
Therefore, aperiodic signals are converted to periodic signals. The continuous line repre-
sents the captured signal. The dotted lines are the presumed periodic repetition from time

to

Change #2: Time

The inherent periodicity of a discrete time signal is T =N . At and discrete time 
time is = Then, Equation 5.7 becomes
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Change #3:Nyquist Criterion

The highest frequency that can be resolved from a discrete time signal is the 
Nyquist frequency as shown in Chapter 3. Therefore, the highest 
frequency of any harmonic to be included in the series is = At).
Replacing T N At, the discrete time Fourier series need not extend beyond

Keeping N summation terms, from to -1,

Change #4:Shift in SummationLimits

The complex exponential does not change if either u or appear in the 
exponent because =1. Then the summation limits are shifted while
keeping N-terms in the summation. In particular, Equation 5.9 can be written as

where negative frequencies are avoided. The fact that the summation limit goes 
above does not imply that higher frequencies are extracted from the discrete
signal. This is just a mathematical effect that will be discussed further in the text. 
An important conclusion from this analysis is that the Fourier series for discrete
time periodic signals is 

Analysis:Computing the Fourier Coefficients

Fourier can be obtained by least squares fitting the signal with
the Fourier series in Equation 5.10: given the array identify each coefficient 
so that the total square error E between measured values and predicted values

minimized, - When the fitting is complete, 
the residual is E = (There may be some numerical noise. See solved problems
in Chapter 3.)

A better alternative is to call upon the orthogonality property of harmonics to
identify how much the signal (N points sampled with an interval At) resem-
bles a given sinusoid of frequency = u. .At). Following this line of
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thought, the Fourier coefficients are computed as the zero-shift value of the
cross-correlation:

Note that Equation 5.1 1 is a summationin the time index i, whereas Equation 5.10 
is a summation in the frequency index u. The Fourier coefficient 
captures the static component of the signal (zero-offsetor DC-offset)and the zero
frequency imaginary coefficient is assumed = The array formed
with the complex Fourier coefficients is the "discrete Fourier transform" or
frequency domain representation of the discrete time signal The magnitude of
the Fourier coefficient relates to the magnitude of the sinusoid of frequency

= u that is contained in the signal with phase

= + amplitude (5.12)

= tan-' phase

5.2.3 Selected Fourier Pair

The analysis equation and its corresponding synthesis equation form a "Fourier
pair". From Equations 5.10 and 5.11,

N- l

analysis equation: time frequency (5.14)

synthesis equation: frequency time (5.15)

The normalization factor is added in the synthesis equation to maintain energy
content in time frequency time transformations.

There are different Fourier pairs available in computer software and invoked 
in the literature. This Fourier pair is notably convenient in part owing to the

The Fourier transform and the transform in continuous time are:

Fourier: . .

where is the complex variable s + j . When 0, the transform becomes the Fourier 
transform. The z-transform is the discrete time equivalent of the transform.
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parallelism between the analysis and the synthesis equations. (Other advantages 
will be identified in Chapter 6.) If the is implemented with a given analysis 
equation, the inverse must be computed with the corresponding 
synthesis equation in the pair. Table 5.1 summarizes the Fourier pair and related
expressions.

The of a one-dimensional signal in time involves the frequency 
= and its If the parameter being monitored varies along a 

spatial coordinate the wave number K is used instead. Analogous 
to signals in time, the maximum wavelength that is captured in the discrete 
record depends on the sampling interval and the number of points N so that
= N. and the exponent . t in the complex exponential becomes

Therefore, the formulation presented earlier is equally applicable to spatial vari-
ables.

Table 5.1 Summary: discrete Fourier transform pair and related expessions 

Analysis (from to frequency) Synthesis (from frequency to time)

Static component: =
i

Magnitude: = +

Phase: =

identity:

The following expressions are worth highlighting:
At

1
f

Note:
The physical dimensions are the same in both domains. 
Summations in can be reduced to terms by recalling the symmetry and periodicity
properties. When the summation is extended from u to u = N- I the operation is called "double
sided". When the summation is extended from u= to the operation is called "single sided".
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Computation - Example

In 1965, J. Tukey and J. published an algorithm for the efficient imple-
mentation of the DFT. This algorithm and other similar ones developed since are 
known as the "fast Fourier transform" Maximum computational efficiency 
is attained when the signal length is a power of 2, N = where r is an integer.

Signal analysis and synthesis are demonstrated in Figure 5.3. The aperiodic 
tooth signal in Figure is transformed to the frequency domain. (Recall 
that the discrete time and frequency representation presumes this signal repeats 
itself.) Both real and imaginary components are shown in Figures and c.

that the static component is equal to The synthesis of the signal is 
incrementally computed by adding increasingly more terms in the Fourier series. 
Figures show the evolution of the synthesized signal. The last synthesized 
signal in Figure is identical to the original signal 

5.3 CHARACTERISTICS OF THE DISCRETE
FOURIER TRANSFORM

The most important properties of the are reviewed in this section. Exercises 
at the end of this chapter suggest the numerical verification of these properties. 

5.3.1 Linearity

The Fourier transform is a sum of binary products, thus, it is distributive. There-
fore, given two discrete time signals & and y, and their Fourier transforms
and

5.3.2 Symmetry

The cosine is an even function = whereas sine is odd
Therefore, it follows from Euler's identities (Chapter 2) 

that the Fourier coefficient for the frequency index u is equal to the complex 
conjugate of the Fourier coefficient for 
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(a)

transform:

Synthesizedsignal: - Real Imaginary

0.5

(d) 0.0

-1.0 -1.0

1.5
48 terms

0.0

..
-1.0

terms:
reconstructed signal 

0.5

..... .. . .
-0.5

-1 -1.0

Figure 5.3 Analysis and synthesis:(a) original signal, N =64; (b) and (c) analysis:real
and imaginary components of the synthesis: incremental reconstruction of
the signal by adding an increasingly higher number of Fourier components
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5.3.3 Periodicity

As invoked earlier in relation to Equation 5.10, the complex exponential for 
frequency (u+N) . At) has the same values at discrete times as
an exponential with lower frequency = At). Therefore, 

where k is an integer. Therefore, the discrete time domain assump-
tion inherently implies a periodic signal in time and in frequency, and the
corresponding arrays in each domain repeat with periodicity:

T = N.At (in time domain) N- - (in frequency domain) 
T At

Figure 5.4 presents a discrete signal and its discrete transform and highlights
the periodicities in time domain and frequency domains. 

Convergence - Number of Unknown

It would appear that there are N complex coefficients hence, N unknowns.
However, the periodicity and symmetry properties of the Fourier transform 

that = where the bar indicates complex conjugate. Furthermore, 
and are real. Then, the number of unknowns is reduced to N. Indeed,

this must be the case: each value permits writing one equation like Equa-
tion 5.15, and given that complex exponentials form a base, the number of
unknown Fourier coefficients must be equal to the number of equations N. The
following numerical example verifies these observations. Consider the time series
x= 0, 1, with N=8 elements. The of is obtained using 
Equation 5.14: 

Note that the array fulfills the relation and that 7 and
-1 are real; therefore, there are only N unknowns.

The fact that N values in the time domain are fitted with N Fourier coefficients 
in the frequency domain implies that there will be no convergence difficulties in
the of discrete time signals. (Convergence problems develop in continuous 
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domain:

Frequency domain:

I

I

I
-96 64 96

Figure 5.4 The presumes the signal is periodic both in the time and the frequency
domains. Observe the symmetry properties of real and imaginary components. The time
series has a offset, thus 0.

time signals around discontinuities. This is Gibb's phenomenon, and it manifests
as ripples and overshoots near discontinuities.) In addition, the N information
units available in the time domain are preserved in the frequency domain, as 

by the fact that indicating that there is no loss of
information going from time to frequency and vice versa. 

5.3.5 One-sided and Two-sided Definitions 

The DFT was defined for the frequency index that ranges from = to
-1 or from u to = N- These are called two-sided definitions. 

Yet, there is no need to duplicate computations when one does not
physically measure negative frequencies, and cannot resolve above the Nyquist
frequency. Therefore, one-sided definitions are established between = and
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u Two-sided definitions are advantageous in analytical derivations. How-
ever, one-sided definitions are computationally efficient. (See exercise at the end 
of this chapter.) To avoid confusion, derivations, computations, and examples in
this text are obtained with two-sided definitions.

5.3.6 Energy

The energy in a signal is the sum of the square of the amplitude of the signal
at each point. Each Fourier coefficient indicates the amplitude of the sinusoid
of frequency u that is contained in the signal. Therefore, the energy
in the signal is also computed from the Fourier coefficients, as prescribed in 
Parseval's identity, 

The plot of versus frequency is the autospectral density of the signal, also 
known as power spectral density. (Spectral values in one-sided computations
are twice those corresponding to the two-sided definition except for the
frequency term.) 

5.3.7 Time Shift

Consider a wave train propagating along a rod. The signal is detected with two
transducers. If the medium is not dispersive or lossy, and the coupling between
the transducers and the rod are identical, then the only difference between the
signal detected at the first transducer and the signal y detected at the second 
transducer is the wave travel time between the two r . At. For a single
frequency w sinusoid,

if

I (5.22)

then = e

For the given travel time, the higher the frequency signal, the higher the phase 
shift. When phase is measured, computed values can only range between

and proper "phase unwrapping" is required (Chapter 6).
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The derivative of a continuous time sinusoid =A t) is = w. A
t). In words, the derivative of a sinusoid implies a linear scaling of the

amplitude by the frequency and a phase shift. The first derivative in discrete 
time y can be approximated by finite differences. The corresponding DFT is

by invoking the time shift property (Equation 5.22):

- then (5.23)At At

The magnitude of the coefficient that multiplies increases with u. Thus, this 
result predicts the magnification of high-frequency components when a differen-
tiation transformation is imposed. This is in agreement with observations in the 
time domain whereby the derivative of a signal is very sensitive to the presence
of high-frequency noise. 

5.3.9 Duality

The parallelism between the analysis and synthesis equations in a Fourier pair
(Equations 5.14 and 5.15, Table 5.1) leads to the property of duality. Before pro-
ceeding, notice that the exponents have the opposite sign in the Fourier pair; this
means opposite phase: one is turning clockwise and the other counterclockwise, 
or in terms of time series, one is the tail-reverse version of the other. (For clarity, 
replace the exponentials for their trigonometric identities: a tail-reverse cosine is 
the same cosine; however, a tail-reversed sine becomes [-]sine, thus opposite 
phase.)

Now, consider the signal shown in Figure The of signal com-
puted with Equation 5.14 is shown in Figures and c. Then, the analysis 
Equation 5.14 is used again to compute a second DFT but this time of that
is Figure shows that the result is the original signal but in 
reversed order and scaled by N. In mathematical terms,

1. . . - .DFT [DFT ..
N

Duality is a useful concept in the interpretation of time and frequency domain 
operations and properties. 

5.3.10 Time and Frequency Resolution

The time resolution is defined as the time interval between two consecutive 
discrete times; this is the sampling interval At - Likewise, frequency 
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Figure 5.5 The duality property of the DFT: (a) the original signal (b) its discrete
Fourier transformed to the frequency domain (c) the (not inverse) discrete
Fourier transformation of sends the series back to the time domain, but the signal
appears tail-reversed

resolution is the frequency interval between two consecutive discrete frequencies 
Af = - where each frequency is the u-th harmonicof the first frequency 

= u. = At). Then Af - (u+1- At):

1 1
that is N =

Af At

This is known as the "uncertainty principle"in signal processing: when limited to
N pieces of information, the resolution in frequency can only be improved at the
expense of the resolution in time (see solved example at the end of this Chapter).

5.3.1 Time and Frequency Scaling

The length N of the array can be reduced by decimation (removal of intermediate
points) or increased by interpolation. Similar effects are obtained by varying the
sampling interval At during conversion: down-sampling or up-sampling. In
either case, the total time duration of the signal remains the same. Consider a
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stationary continuous signal sampled with two different sampling rates At
and

The values and are equal at the same discrete time = therefore, = k a.
Likewise, the values of and are equal at the same discrete frequency 

therefore, u Thus,

1
if then - .

a

u

Discrete time 

= At

This result shows the inherent inverse relation between time and frequency. The
factor in the frequency domain reflects the selected Fourier pair. Down-
sampling is restricted by the Nyquist frequency.

5.4 COMPUTATION IN MATRIX FORM

Signal

The summation of binary products in analysis and synthesis equations is equiv-
alent to matrix multiplication, and the transformation = implied in
Equation 5.14 can be computed as:

Discrete frequency

Time Frequency

where each row in the Fourier transform matrix is the array of values that 
represents a complex exponential. In other words, i-th element in the u-th row
of is

Note that u and play the same roles in the exponent; therefore, the element 
is equal to the element and the matrix is symmetric =

Similarly, the implicit operations in matrix to the synthe-
sis equation or inverse Fourier transform. The elements in the inverse Fourier 
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matrix have positive exponent, and the following equality holds (see 

N
-

N
where the bar indicates complex conjugate. (Note: this is in agreement with the
duality property, where the conjugate implies reversal.) Therefore, the inverse 
Fourier transform is 

1 -
x - F .X Frequency (5.30)

Matrix is the of (Chapter2). It follows from Equations 5.27 

and 5.30 that

Implementation Procedure 5.1 outlines the implementation of Fourier transform 
operations in matrix form.

ImplementationProcedure 5.1 Fourier analysis in matrix form

1. Digitize the signal with a sampling interval At to generate the array 
x

2. Create the Fourier transformation matrix 

for i and that range between . . N- The matrix is symmetric.

3. The of the signal is I
4. The magnitude and the phase of each frequency component are I

Magnitude: =

Phase :

1
for corresponding frequency: = u or

N -At At
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5. Conversely, given a signal in the frequency domain its IDFT is the time 
domain signal 

1-
x = . X where complex conjugate of-

Note: The fast Fourier transform is preferred for large signals. The
algorithm is included in all commercially available mathematical
and in public domain codes at numerous internet sites.

5.5 TRUNCATION, LEAKAGE, AND WINDOWS

Short duration transients can be adequately recorded beginning to end. Some
converterseven to gather the background signal prior to

the transient. However, long-durationor ongoing signals are inevitably truncated
and we only see a finite "window of the signal".

The effects of truncation are studied with a numerical example in Figure 5.6.
The sinusoid is truncated when six cycles are completed (Figure The
autospectral density is shown in Figure Given that this is a single-frequency
sinusoid, the autospectral density is an impulse at the frequency of the signal.
Figure shows a similar signal truncated after 5.5 cycles. The autospectral 
density is shown in Figure In contrast to the previous case, energy has 
"leaked" into other frequencies. 

Leakage is the consequence of two inherent characteristics of the DFT. The
first one is the unmatched harmonic effect whereby the sinusoid frequency in
Figure is not a At); therefore, the cannot pro-
duce an impulse at f*. Instead, the "curve-fits" the signal with harmonically 
related sinusoids at frequencies At). The second cause for leakage 
results from the presumed periodicity in the DFT: the signal in Figure is
effectively considered the periodic signal in Figure The resulting sharp 
discontinuities at the end of the signal require higher-frequency components; in 
addition, the lack of complete cycles leads to a nonzero static component.

The window imposed on the analog signal during conversion into a finite
record is a sharp-edged window and magnifies discontinuity effects. 
Leakage is reduced by "windowing the signal" with gradual window arrays
The windowed signal is obtained multiplying the signal with the window 
w point by point:
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Figure 5.6 Truncation and windowing: (a, b) the of a single frequency sinusoid is
an impulse if it completes an integer number of cycles in the duration of the signal T;
(c, d) this signal has an incomplete number of cycles; its is not an impulse and has a 
static component; (e) periodic assumption in the signal in frame 'c' but windowed 
with smooth transition towards zero ends; (g) autospectrum of the windowed signal 

, I, , ,

I

I

:,', ,
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The Hanning and Hamming windows are two common windowing functions:

E
Hanning -2 (5.33)

otherwise

E
Hamming =

0 otherwise

These windows are centered around i M and have a time width E.At. In this 
format, the rectangular window becomes 

E
Rectangular = 1

2
otherwise

Figure shows the signal in Figure when the Hanning window is used.
Finally, Figure shows the autospectral density of the windowed signal. 

The energy available in the windowed signal is reduced by windowing. The
ratio of the energy in the original signal and the windowed signal can
be computed in the time domain:

5.6 PADDING

A longer duration N At signal renders a better frequency resolution Af =
At). Therefore, a frequently used technique to enhance the frequency reso-

lution of a stored signal length N consists of "extending" the signal by appending
values to a length M N. This approach requires careful consideration. 

There are various"signal extension"strategies. Zero padding, the most common 
extension strategy, consists of appending zeros to the signal. Constant padding
extends the signal by repeating the last value. Linear padding extends the signal 
while maintaining the first derivative at the end of the signal constant. Finally,
periodic padding uses the same signature for padding.
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Autospectrum

F i r e 5.7 Time and frequency resolution: (a, b) original N =16 signal and its auto
spectrum; (c, d) zero-padded signal with N = 32 and its auto spectrum. Padding increases 
frequency resolution. The peak in the autospectral density of the original signal is absent 
because there is no corresponding harmonic. (Note: the time interval At is kept constant, 
the number of points N is doubled, and the frequency interval is halved.)

Figure 5.7 presents an example of zero padding. The signal length is N 16 and
the decomposes it into harmonics = while the padded signal
is length M = 32 and the associated harmonics are = The sinusoid
duration is 11 thus, its main frequency is = .At). Therefore, the
harmonic for v 3 in the of the padded signal is quite close to f*, but there
is no harmonic in the of the original signal near 

The following observations follow from this example and related analyses: 

Signal extension is not intended to add information. Therefore, there is no new
information in the frequency domain if the same information is available in
the time domain. 

The real effect of padding is to create harmonic components that better
the signal.

Zero and periodic padding may create discontinuities; plot the signal in the
time domain to verify continuity. 
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The negative effects of padding are reduced when signals are properly
detrended and windowed first.

The signal length can be increased by adding zeros at the front of the signal; 
however, this implies a time shift in all frequencies, and a frequency-dependent
phase shift, as predicted in Equation 5.22.

Signal extension to attain a signal length N = allows the use of more
putationally efficient Fast Fourier transform algorithms. However, harmonics
may be lost: for example, a sinusoid with period 450 At in a signal length 
N =900 has a harmonic at u= 2, but it has no harmonic when the signal is 
zero padded to M = = 1024.

When the main frequency in the signal under study is a known value then
record length N and sample interval At are selected so that is one the 
harmonics = in the discrete spectrum.

The presumes the signal is periodic with fundamental period T=
N . At. Signal extension increases the fundamental period and prevents circular 
convolution effects in frequency domain computations (Chapter 6).

The previous observations apply to deterministicsignals. In the case of random
signals, signal extension must preserve stationary conditions.

Enhanced resolution with harmonics that better "fit" the signal lead to more 
accurate system identification (review Figure 5.7). Consider a low-damping single
degree of freedom oscillator: the narrow resonant peak may be missed when the
frequency resolution is low and no harmonic matches the resonant frequency. 
In this case, the inferred natural frequency and damping of the oscillator would
be incorrect.

5.7 PLOTS

A signal in the time domain (time or space) is primarily plotted as versus
time . At. However, there are several alternatives in the frequency domain
to facilitate the interpretation of the information encoded in the signal. Consider
the signal in Figure which shows the free vibration of an oscillator after 
being excited by a very short input signal. Various plots of the
are shown in Figures 

Figure shows the density versus the frequency index u. The
mode of vibration is clearly seen. When the autospectral density is plotted

in log scale, other low-amplitude vibration modes are identified (Figure 
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Figure 58 Different plots of the of a signal: (a) original signal in time domain;
(b, c) autospectral density - normal and log magnitudes; (d, e) real and imaginary com- 
ponents versus frequency index u; (f, g) amplitude and phase versus frequency index u;
(h) imaginary versus real component (Cole-Cole plot); (i) amplitude versus phase. Fre-
quency domain data are presented single-sided, for u=
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Figures and e show the real and imaginary components
of the versus the frequency index u.

Figures and g show the amplitude and the phase versus the
frequency index u.

Figure shows the imaginary component versus the real component 
This is called the Cole-Cole plot, and it is used to identify materials 

that show relaxation behavior response of a viscoelastic material); a 
relaxation defines a semicircle in these coordinates.

Figure shows a plot of amplitude versus phase.

Any frequency is readily recovered from the frequency counter u as =
In particular, the frequency associated with the peak response is the oscillator 
resonant frequency. The oscillator damping is reflected in both time and frequency 
domains: low damping is denoted by multiple oscillations in the time domain 
(Figure 5.8) and a narrow peak in the frequency domain (Chapter 4).

5.8 THE TWO-DIMENSIONALDISCRETE FOURIER
TRANSFORM

A 2D signal q) captures the variation of a parameter in two dimensions p and 
q. During conversion, the signal is digitized along a grid made of M discrete
values in p and N discrete values in q. The discrete 2D signal is a matrix
where entry corresponds to location p = Ap and q = k . Aq. The 2D
may involve data gathered in any two independent dimensions, such as a digital
picture or a sequence of time series obtained at different positions in space. 

The of is also a matrix; each entry corresponds to frequencies 
= . Aq). The 2D Fourier transform pair is

( ) . 2D (5.37)

.I
The 2D DFT can be computed with algorithms in two steps. an interme-
diate matrix is constructed where each row is the of the corresponding 
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row of The columns of the final 2D Fourier transform obtained by
computing the DFT of the corresponding columns in 

Analysis and synthesis operations can be form, in analogy
to the case of signals. In particular, if the discrete signal is square M N,
the 2D Fourier transform of is

from to

where the second equality follows from = The k-th element in the v-th row 
of x N) is

Because (Equation the synthesis equation in matrix 
form is 

from to p-q

Other concepts such as resolution, truncation and leakage, discussed in relation 
to signals, apply to 2D signals as well.

Examples of 2D are presented in Figure 5.9 (see solved example at the
end of this Chapter). The following observations can be made (analogous to the 

Figure 5.1). The DFT of a uniform 2D signal has only the real DC
component at u v (Figure The of the linear combination of 2D
signals is the linear combination of of the individual signals (Figure 
A single frequency sinusoid becomes an impulse in the frequency domain in the 
same direction as the signal in the time domain (Figure if there is leakage, 
it manifests parallel to the u and v axes.

5.9 PROCEDURE FOR SIGNAL RECORDING 

The most robust approach to signal processing is to improve the data at the
lowest possible level (review Section 4.1.5). Start with a proper experimental 
design: explore various testing approaches, select the transducers that are best
fitted to sense the needed parameter under study, match impedances, reduce 
noise by proper insulation (electromagnetic, mechanical, thermal, chemical, and
biological)and use quality peripheral electronics. If the signal is still poor, then the 
option of signal stacking should be considered before analog filters are included 
in the circuitry. 



PROCEDUREFOR SIGNAL RECORDING 129

I Imaginary

, ,

I u 4 u

2D component Imaginary
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component
,

Figure 5.9 The 2D-DFT:(a) constant-value signal: theonly nonzero value in is the 
DCcomponent;(b) thesignal + hasonepeakin the realpart and
onepeakin theimaginary components of the2D-DFT-note the direction ineachcase relative 
to the image; the of the single frequency sinusoid sin (i+ is
alignedin the samedirectionas theoscillationsin thesignal

these recommendations have been taken into consideration, start planning 
the signal digitization and storage. Concepts discussed in this and the previous 
chapters permit outlining of common guidelines for signal recording that are appli-
cable to most situations. When signal processing involves data gathering 
must consider signal length, truncation and leakage, windowing, and frequency 
resolution. Guidelines are summarized in the Implementation Procedure 5.2.
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Implementation Procedure 5.2 Recommended procedure for signal 
recording

1. The signal must be improved at the lowest possible level, starting with a
carefully designed experimental setup, adequate choice of electronics, and
proper isolation of the system to reduce noise.

2. It is advantageous to extend the recording duration T so that zero amplitude 
is recorded at the front and tail ends of the signal. This is possible in 
short-duration events.

3. The sampling interval or time resolution At must be selected to prop-
erly digitize the highest-frequency component of interest fulfilling
the Nyquist criterion. It is recommended that At be used. 
If unwanted higher frequency components are expected, they should be
removed with an analog filter before digitalization. Many systems
include antialiasing filters at the input to automatically remove frequency
components that would be otherwise.

4. The total number of points to be recorded is estimated as N = If
you know the main frequency in the signal under study f*, then combine
record length N and sample interval At so that is one of the harmonics

in the discrete spectrum. 

5. Detrend and remove spikes in the signal before the signal is transformed.

6. Window truncated signals to reduce leakage. Windowing and zero-offset
corrections may be repeated. 

7. Extend the recorded signal to increase frequency resolution. Make sure 
that there is a harmonic in the padded signal that corresponds to the main
component in the signal under study.

5.10 SUMMARY

Harmonically related sinusoids and complex exponentials are orthogonal func-
tions in the open interval [0, T[. Therefore, they form a base that can be used
to express any other function as a linear combination. This is the foundation
for the

For a robust interpretation of the of a signal length N, remember that:
(1) the is equivalent to fitting the signal with a series of cosines and sines
and storing the amplitudes in the "real" and "imaginary" arrays, (2) the signal 



SOLVED PROBLEMS

is assumed periodic with period equal to the duration of the signal T N . At,
and (3) only harmonically related sinusoid frequencies At) are used. 

The has a finite number of terms. In fact, there are N information units
in a signal length N, both in the time domain and in the frequency domain.
There are no convergence difficulties in the of discrete time signals.

The parallelism between analysis and synthesis relations in a Fourier pair leads
to the duality of the DFT. 

Resolution in time is inversely proportional to resolution in frequency. Signal 
extension or padding decreases the frequency interval between consecutive
harmonics.

The truncation of ongoing signals produces leakage. Leakage effects are 
reduced by windowing signals with smooth boundary windows. 

The can be applied to signals that vary along more than one independent 
variable, such as 2D images or data in space-time coordinates.

The signal must be improved at the lowest possible level, starting with careful
experimental setup, adequate choice of electronics, and proper isolation of the
system under study to reduce noise. While planning analog-to-digital conver-
sion, the experimenter must take into consideration the system under study and
the mathematical implications of digitization and operations.
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SOLVED PROBLEMS

P5.1 Fourier series. Demonstrate that:
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Solution: Using Euler's identities 

t) + j .sin t) [COS t)- j .sin t)

=

sin t) cos + sin sin t)

Invoking Equation 5.4, the previous equation simplifies to 

T

[sin

And, from Equations 5.3 and 5.4:

P5.2 Digitization. Given a sampling interval At = and a record length
T = compute: (a) frequency resolution, (b) frequency corresponding
to the frequency counter u=13, (c) the shortest time shift compatible with
a phase shift for the frequency component that corresponds to 
u =10.
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Solution:

(a) The frequency resolution is Af = = =

(b) The frequency correspondingto u 13 is u.Af f 13 Hz
26Hz

u(c) Phase and time shifts are related as -

The time shift is 0.025 s 
u

P5.3 2D-Fourier transform. Create a 2D image to represent ripples on a pond.
Calculate the discrete Fourier the results.
Solution: Definition of function N elements where N =64)

Distance from the center of the pond: 

Displacement function: 

Discrete Fourier transform matrix:

2D discrete Fourier transform: - - -

Magnitude: .
where the spatial indices i and k range from to N-1 and the frequency 
indices u and v range from to N- Time and frequency domain plots 
are presented next. Only one quadrant of the 2D-DFT is shown:
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Interpretation: There are 15 ripples in both and k directions along the
center of the plot. That is the location of peak energy along the u and v axis. 

Explore this solution further. What happens if you shift the center of
the ripples away from the center of the image? What is the 2D-DFT of a
signal with elliptical ripples? 

ADDITIONAL PROBLEMS

P5.4 Fourier series. Compute the fourth-order discrete Fourier series (u
0, that best approximates an odd square wave. Repeat for an
even square wave. Compare the coefficients for sine and cosine compo-
nents in both cases. What can be concluded about the decomposition of
even and odd signals?

P5.5 Discrete Fourier pairs. There are various Fourier pairs besides 
the one presented in Table 5.1; for example: 

Analysis: = .cos i) and .sin i)

Synthesis: = .cos + j sin

Determine the relationship between this Fourier pair and the one presented
in Table 5.1. Explicitly state the relationship between and b,, and

P5.6 Properties of the discrete Fourier transform. Demonstrate the following 
properties of the DFT of discrete periodic signals: linearity, periodicity, 
differentiation, Parseval's relation, time shift, and N (matrix- -
operations).Is the magnification of high-frequency components linear with
frequency in Equation

P5.7 Single-sided discrete Fourier transform. Use the properties of the
to show that the computation of the can be reduced to coefficients 
u= to u = Rewrite the synthesis equation to show this reduced 
summation limits. Corroborate your results using numerical simulation. 
Compare the autospectral density in both cases. 

P5.8 Discrete Fourier transform of a complex exponential. What is the
of a complex exponential? Consider both positive and negative expo-
nents. Solve this problem both analytically and numerically. (Important:
use double sided formulation, that is, from u = to N- this exercise
is revisited in Chapter 7.)
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P5.9 Padding. Generate a N 300 points sinusoid sin (8 . i). Consider
different padding criteria to extend the signal to N = 512 points and com-
pute the in each case. Analyze spectra in detail and draw conclusions.

P5.10 Application: signal recording and preprocessing. Capture a set of signals 
within the context of your research interests. Follow the recommendations 
outlined in the Implementation Procedure 5.3. For each signal:

the signal. 

Window the signal with a Hamming window (test different widths E).

Compute the and plot results in different forms to highlight the 
underlying physical process.

Infer the characteristics of the system damping and resonance if
testing a single system).

Double the number of points by padding, compute the and compare
the spectra with the original signals.

Repeat the exercise varying parameters such as sampling interval At,
number of stored points N, and signal amplitude.

Application: sound and octave analysis. The octave of a signal frequency 
f is the first harmonic 2f. In "octave analysis", frequency is plotted in
logarithmic scale. Therefore, the central frequency of each band increases
logarithmically, and bins have constant log-frequency width; that is, the
frequency width of each bin increases proportionally to the central fre-
quency. Systems that operate with octave analysis include filters with 
upper-to-lower frequency ratio 2n, where n is either 1, 112, 116, or 1112.
This type of analysis is preferred in studies of sound and hearing. Create a
frequency sweep sinusoid with frequency increasing linearly with time.
Plot the signal. Compute and plot the magnitude versus 
linear and logarithmic frequency. Draw conclusions.

P5.12 Application: Walsh series. A signal can be expressed as a sum of square
signals with amplitude that ranges between and -1. In particular, the 
Walsh series is orthogonal,normalized, and complete. Research the Walsh
series and:

1. Write the Walsh series in form (length N = 16).

2. Study the properties of the matrix. Is it invertible?
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3. Apply the Walsh's decomposition to a sinusoidal signal, a stepped
signal transducerwith digital output), and to a small digital image. 

4. Analyze your results and compare with Fourier approaches (see also
the Hadamard transform).


