
Appendix A

Vector Calculus: a quick review

Selected Reading

H.M. Schey,. Div, Grad, Curl and all that: An informal Text onVector Calculus,
W.W. Norton and Co., (1973). (Good physical introduction tothe subject)

Mase, George. Theory and problems of Continuum Mechanics: Schaum’s outline
Series. (Heavy on tensors but lots of worked problems)

Marsden, J.E. and Tromba, A.J. . Vector Calculus. W.H. Freeman (or any standard
text on Vector calculus)

In modeling we are generally concerned with how physical properties change
in space and time. Therefore we need a general mathematical description of both
the variables of interest and their spatial and temporal variations. Vector calculus
provides just that framework.

A.1 Basic concepts

Fields A field is a continuous function that returns a number (or setsof numbers)
for every point in space and time(x, t). There are three basic flavours of fields we
will deal with

scalar fields A scalar fieldf(x, y, z, t) returns a single number for every point in
space and time. Examples include temperature, salinity, porosity, density. . . .

vector fields A vector fieldF(x, y, z, t) returns a vector for every point in space
and is readily visualized as a field of arrows. Examples include velocity,
elastic displacements, electric or magnetic fields.

tensor fields A second rank tensor fieldD(x, y, z, t) can be visualized as a field
of ellipsoids (3 orthogonal vectors for every point). Examples include stress,
strain, strain-rate.

1



2

Notation There are many different notations for scalars, vectors andtensors (and
they’re often mixed and matched); however, a few of the common ones are

scalars scalars are usually shown in math italics e.g.f , g, t. . .

vectors come in more flavours. when typeset they’re usually bold-roman charac-
ters e.g.V, or the unit vectorsi, j,k. When hand written they usually have
a line underneath them. Vectors can also be written in component form as
v = vxi + vyj + vzk or in index notationv = viêi where êi is another
representation of the unit vectors.

tensors (actually second rank tensors) Typeset in sans-serif fontD (or often just
a boldσ), handwritten with two underbars, or by componentDij . 2nd rank
tensors are also conveniently represented by matrices.

Definitions of basic operations

vector dot product

a · b = aibi = |a||b| cos θ (A.1.1)

is a scalar that records the amount of vectora that lies in the direction of
vectorb (and vice versa).θ is the smallest angle between the two vectors.

vector cross product c = a × b is a vector that is perpendicular to the plane
spanned by vectorsa andb. The direction thatc points in is determined by
the right hand rule. Notea× b = −b × a. The cross product is most easily
calculated as the determinant of the matrix
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(A.1.2)

or

c = (aybz − azby)i − (axbz − azbx)j + (axby − aybx)k (A.1.3)

or in index notation asci = εijkajbk whereεijk is the horrid permutation
symbol.

tensor vector dot product is a vector formed by matrix multiplication of a tensor
and a vectorc = D · a. In the case of stress, the force acting on a plane
with normal vectorn is simply f = σ · n. Each component of the vector is
most easily calculated in index notation withci = Dijaj with summation
implied over repeated indices (i.e.c1 = D11a1 + D12a2 + D13a3 and so on
for i = 2, 3.
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A.2 Partial derivatives and vector operators

Definitions Given a scalar function of one variablef(x), its derivative is defined
as

df

dx
= lim

∆x→0

f(x + ∆x) − f(x)

∆x
(A.2.1)

(and is locally the slope of the function). Given a function of more than one vari-
able,f(x, y, t), the partial derivativewith respect to x is defined as

∂f

∂x
= lim

∆x→0

f(x + ∆x, y, t) − f(x, y, t)

∆x
(A.2.2)

i.e. if we sliced the function with a plane lying alongx, the partial derivative would
be the slope of the function in the direction ofx (See Figure A.1a) likewisey or t.

In space in fact it is convenient to consider all of the spatial partial deriva-
tives together in one handy package, the ‘del’ operator (∇) a.k.a. the upside down
triangle.. In Cartesian coordinates this operator is defined as

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(A.2.3)

In combination with vector and scalar fields, the del operator gives us important
information on how these fields vary in space. In particular,there are 3 important
combinations

the Gradient the gradient of ascalar functionf(x)

∇f = i
∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
(A.2.4)

is avector field where each vector points ‘uphill’ in the direction of fastest
increase of the function (See Figure A.2).

the Divergence the divergence of avector field

∇· F =
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
(A.2.5)

is a scalar field that describes the strength of local sourcesand sinks. If
∇·F = 0 the field has no sources or sinks and is said to be ‘incompressible’.

the Laplacian the Laplacian of ascalar field

∇2f = ∇· (∇f) =
∂ 2f

∂x2
+

∂ 2f

∂y2
+

∂ 2f

∂z2
(A.2.6)

is a scalar field that gives the local curvature (See Figure A.3).

the Curl the curl of a vector field

∇× F = (
∂Fz

∂y
−

∂Fy

∂z
)i − (

∂Fz

∂x
−

∂Fx

∂z
)j + (

∂Fy

∂x
−

∂Fx

∂y
)k (A.2.7)

is a vector field that that describes the local rate of rotation or shear.
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Other useful relationships Given the basic definitions, there are several iden-
tities and relationships that will be important for the derivation of conservation
equations.

Gauss’ divergence theoremGauss’s theorem states that the flux out of a closed
surface is equal to the sum of the divergence of that flux over the interior of
that volume (it is actually closely related to the definitionof the Divergence).
Mathematically

∫

S
F · dS =

∫

V
∇· FdV (A.2.8)

useful identities the first homework will make you show that

1. ∇· (∇×F) = 0 (i.e. if a vector field can be written asV = ∇× g then
it is automatically incompressible).

2. ∇× (∇f) = 0 (a gradient field is irrotational)

3. ∇× ∇× V = ∇(∇· V) −∇2V

4. ∇× [(V · ∇)V] = (V · ∇)[∇× V]

Figures A.1–A.5 show some examples of scalar and vector fields and their
derivatives.
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Figure A.1: (a) Surface plot of the 2-D scalar functionf(x, y) =
5 exp

[

−(x2/90 + y2/25)
]

(b) contour plot of the same function.
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Figure A.2:Vector plot of∇f(x, y) for the functionf in Figure A.1.

-10.0 0.0 10.0

-10.0

0.0

10.0

x

y

0.1

-0.4

-0.3
-0.2

0.0

0.1

Figure A.3: contour plot of of the divergence of the vector field in FigureA.2. Because
∇· (∇f) = ∇2f this plot is also a measure of the curvature of the functionf .
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Figure A.4: (a) Vector plot of the 2-D corner flow velocity fieldV(x, y) =
2/π

[(

tan−1(x/y) − xy/(x2 + y2)
)

i − y2/(x2 + y2)j
]

(b) contour plot oflog
10

(∇×V ·
k). The maximum rate of rotation is in the corner. There is no rotation directly on thex
axis. This field is incompressible however and∇· V = 0
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Figure A.5:Vector plot of pure-shear flow fieldV(x, y) = xi−yj. Although the flow lines
of this field are superficially similar to those of Figure A.4,this flow is locally irrotational
i.e. ∇× V = 0. This flow is also incompressible.


