Appendix A

Vector Calculus: a quick review

Selected Reading

H.M. Schey,. Div, Grad, Curl and all that: An informal Text ®actor Calculus,
W.W. Norton and Co., (1973). (Good physical introductioritte subject)

Mase, George. Theory and problems of Continuum Mechanicisai8n’s outline
Series. (Heavy on tensors but lots of worked problems)

Marsden, J.E. and Tromba, A.J. . Vector Calculus. W.H. Fese(or any standard
text on Vector calculus)

In modeling we are generally concerned with how physicapprbees change
in space and time. Therefore we need a general mathemagisatigtion of both
the variables of interest and their spatial and temporaatrans. Vector calculus
provides just that framework.

A.1 Basic concepts

Fields A field is a continuous function that returns a number (or setsimbers)
for every point in space and timg, t). There are three basic flavours of fields we
will deal with

scalar fields A scalar fieldf (x,y, z, t) returns a single number for every point in
space and time. Examples include temperature, salinitgsity, density. . ..

vector fields A vector fieldF(z,y, z,t) returns a vector for every point in space
and is readily visualized as a field of arrows. Examples uheluelocity,
elastic displacements, electric or magnetic fields.

tensor fields A second rank tensor field(z,y, z,t) can be visualized as a field
of ellipsoids (3 orthogonal vectors for every point). Exdesgnclude stress,
strain, strain-rate.



Notation There are many different notations for scalars, vectorgamsbrs (and
they're often mixed and matched); however, a few of the comomes are

scalars scalars are usually shown in math italics efg.g, t. ..

vectors come in more flavours. when typeset they’re usually boldamorcharac-
ters e.gV, or the unit vectorg, j, k. When hand written they usually have
a line underneath them. Vectors can also be written in coepioform as
V = v,i + v,j + vk or in index notationv = v;&; wheree; is another
representation of the unit vectors.

tensors (actually second rank tensors) Typeset in sans-serif Bofdr often just
a boldg), handwritten with two underbars, or by componéht. 2nd rank
tensors are also conveniently represented by matrices.

Definitions of basic operations

vector dot product
a-b=a;b; =|al|b|cosd (A.1.1)

is a scalar that records the amount of ve@dhat lies in the direction of
vectorb (and vice versa) is the smallest angle between the two vectors.

vector cross product ¢ = a x b is a vector that is perpendicular to the plane
spanned by vectorg andb. The direction that points in is determined by
the right hand rule. Nota x b = —b x a. The cross product is most easily
calculated as the determinant of the matrix

C=|a; ay a; (A.1.2)

or
C = (ayb; — azby)i — (azb, — azby)j + (azby — ayby )k (A.1.3)

or in index notation ag; = ¢;;,a;b; Wheree;;;, is the horrid permutation
symbol.

tensor vector dot product is a vector formed by matrix multiplication of a tensor
and a vectoic = D - a. In the case of stress, the force acting on a plane
with normal vectom is simplyf = o - n. Each component of the vector is
most easily calculated in index notation with= D;;a; with summation
implied over repeated indices (i.e. = Dy1a1 + Disa2 + Dysas and so on
fori =2,3.
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A.2 Partial derivatives and vector operators
Definitions Given a scalar function of one variabféz), its derivative is defined

as
df . fle+Az) — f(z)

de Alirgo Az A-2.1)
(and is locally the slope of the function). Given a functidmwre than one vari-
able, f(z,y,t), the partial derivativevith respect to x is defined as

oz Alalcgo Az (A-22)

i.e. if we sliced the function with a plane lying alongthe partial derivative would
be the slope of the function in the direction:o{See Figure A.1a) likewisg or ¢.

In space in fact it is convenient to consider all of the spaitial deriva-
tives together in one handy package, the ‘del’ operaXoy &.k.a. the upside down
triangle.. In Cartesian coordinates this operator is ddfase

0 0
voi? 1:9 9
or Ty TR0z
In combination with vector and scalar fields, the del opeérgiees us important
information on how these fields vary in space. In particutagre are 3 important
combinations

(A.2.3)

the Gradient the gradient of acalar function f(x)

Vf= 1ﬁ +Jﬁ + kﬁ (A.2.4)
oy 0z
is avector field where each vector points ‘uphill’ in the direction oftast
increase of the function (See Figure A.2).

the Divergence the divergence of gector field

oF, O0F, OF.

. E = T Y z

v Ox + oy + 0z

is a scalar field that describes the strength of local soumoessinks. If
V-F = 0 the field has no sources or sinks and is said to be ‘incomjessi

(A.2.5)

the Laplacian the Laplacian of acalar field
0%f 0%f O%f
+

2 _ . _
Vef=V-(Vf) 922 + a2 T 922 (A.2.6)
is a scalar field that gives the local curvature (See Figu83. A.
the Curl the curl of a vector field
OF, OF, oF, O0F, . ,0F, OF,
VXF_(@y 82) (Ox_az)J+(8m_8y)k (A.2.7)

is a vector field that that describes the local rate of rotadioshear.



Other useful relationships Given the basic definitions, there are several iden-
tities and relationships that will be important for the dation of conservation
equations.

Gauss’ divergence theoremGauss’s theorem states that the flux out of a closed
surface is equal to the sum of the divergence of that flux dweiriterior of
that volume (it is actually closely related to the definitmfrihe Divergence).
Mathematically

/ F.-dS= / V- FdV (A.2.8)
s 1%
useful identities the first homework will make you show that

1. V- (VxF) =0 (i.e. if avector field can be written & = V x gthen

it is automatically incompressible).

2. Vx (Vf) =0 (agradient field is irrotational)

3. VxVxV=V(V.V)- V2V

4. VX [(V-V)V]= (V- V)[VxV]

Figures A.1-A.5 show some examples of scalar and vectorsfigid their
derivatives.

-10.0

Figure A.1: (a) Surface plot of the 2-D scalar functionf(z,y)
5exp [—(2?/90 + y2/25)] (b) contour plot of the same function.
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Figure A.2:Vector plot of V f(z, y) for the functionf in Figure A.1.
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V2 f this plot is also a measure of the curvature of the funcfion

Figure A.3: contour plot of of the divergence of the vector field in Figiv@. Because
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Figure A.4: (a) Vector plot of the 2-D corner flow velocity field/(z,y) =
2/m [(tan~ (2 /y) — wy/ (2% + y*)) i — y?/(2® + y?)j] (b) contour plot oflog, o (VX V -
k). The maximum rate of rotation is in the corner. There is natiot directly on ther
axis. This field is incompressible however awd V = 0
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Figure A.5:Vector plot of pure-shear flow fieM(z, y) = xi—yj. Although the flow lines
of this field are superficially similar to those of Figure AtHis flow is locally irrotational
i.e. Vx V = 0. This flow is also incompressible.



