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Body and Surface Forces
There are essentially two types of forces acting on a finite volume:
1) Body forces, such as gravity
2) Surface forces, such as atmospheric pressure

Traction vector:

T⃗ ( n̂)= lim
dS→0

F⃗
dS

T⃗ ( n̂)=T 1 x̂1+T 2 x̂2+T3 x̂3
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Static Equilibrium Condition

In the static case, equilibrium 
condition requires zero 
balance of all forces:

Which is, in term of tractions:

∫ F⃗=0

T⃗ ( n̂)dSn−T⃗ ( x̂1)dS1−T⃗ ( x̂2)dS2−T⃗ ( x̂3)dS3=0

Let us now assume a volume with an tetrahedral shape. On each 
face, a traction vector is acting.
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Cauchy’s Equation
dS i
dSn

=n̂⋅x̂i=ni

T⃗ ( n̂)=T⃗ ( x̂1)n1+T⃗ ( x̂2)n2+T⃗ ( x̂3)n3

T 1(n̂)=σ 11n1+σ 12n2+σ 13n3
T2( n̂)=σ 21n1+σ 22n2+σ 23n3
T 3( n̂)=σ 31n1+σ 32n2+σ 33n3

By using the identity: 

It is possible to write the equilibrium equation as:

Or, identically by components:

T i (n̂)=∑
j=1

3

σ ij n j
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The Stress Tensor

[
T 1( n̂)
T 2( n̂)
T 3( n̂)]=[

σ 11 σ 12 σ 13
σ 21 σ 22 σ 23
σ 31 σ 32 σ 33

]⋅[
n1
n2
n3
]

The Chaucy’s equation can be represented in a more compact 
matrix form. 

Where σ is the Stress Tensor

T⃗=σ⋅n̂
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Properties of the Stress Tensor

The stress tensor is symmetric, therefore the stress state of a 
surface of arbitrary orientation is fully described by only 6 
independent components

σ ij=σ ji

[
σ 11 σ 12 σ 13
σ 21 σ 22 σ 23
σ 31 σ 32 σ 33

]

Normal stress: i = j
Shear stress: i ≠ j



Engineering Seismology and Seismic Hazard

  

V. Poggi 2019

For a given stress state it is possible to find a rotation of the 
reference system for which only normal stress are present, while 
shear components vanish.

Axis of the new system are the principal directions, while the 
corresponding normal stresses are the principal stresses.

Principal directions and stresses can be found by diagonalisation of 
the stress tensor using eigenvalue decomposition:

Principal Stresses

[
σ 11−λ σ 12 σ 13

σ 21 σ 22−λ σ 23

σ 31 σ 32 σ 33−λ
]⋅[
n1
n2
n3
]=[
0
0
0 ]

(σ ij−λ δ ij)n j=0
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Principal Directions

Original state

Principal directions

Maximum shear
directions
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Mohr’s Circle
Principal directions can also be conveniently analyzed using Mohr’s 
circle representation, which is also used to study fracturing (more 
on this later)
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Static Equilibrium using Stress
We now repeat the previous exercise for a different volume shape.

In such case, force equilibrium can be computed by component 
separately as:

F1
TOT =

σ 11
dx 1dx2dx3−σ 11

0 dx2dx3+

σ 21
dx 2dx1dx3−σ 21

0 dx1dx3+

σ 31
dx 3dx1dx2−σ 31

0 dx1dx2=0
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By truncated expansion in Taylor series, stresses can be written as:

σ 11
dx 1=σ 11

0
+
∂σ 11

∂ x1
dx1

F1=(
∂σ 11

∂ x1
+
∂σ 21

∂ x 2
+
∂σ 31

∂ x3 )dx1dx2dx3=0

By substitution, the equilibrium equation can be written in the form:

∑
i=1

3 ∂σ ij

∂ xi
=0 ∑

i=1

3 ∂σ ij

∂ xi
+ f V=0

Static Equilibrium using Stress
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Displacement Vector
In a body subject to displacement (u), deformation can be obtained 
by the relative variation of displacement between adjacent points

du j(x i)=u j(xi+dx i)−u j (x i)=
∂u j
∂ x i

dx i
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Strain and Rotation Tensors
Rearranging elements...

du j(x i)=
1
2 (

∂ u j
∂ x i

+
∂ ui
∂ x j )dx i+

1
2 (

∂u j
∂ xi

−
∂ui
∂ x j )dxi

du j (xi)

dxi
=
1
2 (
∂u j
∂ xi

+
∂ui
∂ x j )+

1
2 (
∂ u j
∂ x i

−
∂ ui
∂ x j )

du j (x i)=
∂u j
∂ x i

dx i+
1
2

∂u j
∂ xi

dx i−
1
2

∂ ui
∂ x j

dx i
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Strain and Rotation Tensors

ε ij=
1
2 (

∂u j
∂ xi

+
∂ui
∂ x j )

ω ij=
1
2 (

∂u j
∂ x i

−
∂ ui
∂ x j )

Strain Tensor

Rotation Tensor

While the strain tensor is symmetrical, rotation tensor is anti-
symmetrical
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Examples of Deformation
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The relation between stress and deformation is expressed by the 
Hook’s law:

Hooke’s Law

σ ij=C ijklε kl

C ijkl=λ δ ijδ kl+μ (δ ik δ jl+δ ilδ jk )

Where C is the fourth-order stiffness tensor.

In case of isotropic material, due to symmetries and energetic 
considerations, the tensor reduces from 81 elements to just two 
constants, the Lame’s parameters λ and μ:
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The Hook’s law for the isotropic case can then be simplified as:

Hooke’s Law

σ ij=λ δ jiε kk+2μ ε ij

σ ij=λ δ ji

∂u k
∂ x k

+μ (
∂ u j
∂ x i

+
∂ ui
∂ x j )

Or, identically as function of displacement:
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Now we examine the case when the material is subject to some 
acceleration and find in dynamic condition:

Elastodynamic Equilibrium

∑
i=1

3 ∂σ ij

∂ xi
=ρ

∂
2ui
∂ t 2

(λ +μ )
∂
2uk

∂ x i∂ x k
δ ji+μ

∂
2ui
∂ x j

2=ρ
∂
2ui
∂ t 2

By using the Hooke’s law and after some maths, the elastodynamic 
equation above can be written in displacement as:



Engineering Seismology and Seismic Hazard

  

V. Poggi 2019

The wave equation can be written in a more compact and general 
for in vector notation:

Equation of Motion in Vector Form

(λ +2μ )∇(∇⋅⃗u)−μ ∇×∇×u⃗=ρ
∂
2 u⃗

∂ t 2

VOLUMETRIC
DEFORMATION

ANGULAR
DEFORMATION

This notation is also called the Navier’s equation
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(Generic) Wave Equation Solution
Let us consider a generic hyperbolic partial differential equation 
(scalar wave equation) with velocity c:

∂
2u

∂ x2
=
1

c2
∂
2u

∂ t 2

u (x ,t )=G( x)e−iω t
∂
2G( x)

∂ x2
=−ω

2

c2
G( x)

To solve it, we can assume a generic solution (in Fourier domain):

Which is the eigenvalue function for G(x), with solution:

G(x )=Ae∓ iκ x u (x ,t )=A e− i(ω t±κ x)
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Plane Waves
The solution is actually the real part of the harmonic equation. 
Using the Euler formula, we can rewrite the solution as:

u (x ,t )=A [cos (ω t±κ x)−isin (ω t±κ x )]

c=ω
κ =

λ
T

With:
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Any vector field u=u(x) may be separated into a scalar and a 
vector potential:

Helmholtz Theorem

u⃗=∇ ϕ +∇×ψ⃗

The scalar field is irrotational (does not rotate, no angular 
distortion):

While the vector field is solenoidal (does not diverge, same 
volume):

∇×ϕ=0

∇⋅ψ⃗=0
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Wave Equation using Potentials
By substitution of Helmholtz potentials into the Navier’s equation we 
get (note that null terms are neglected):

(λ +2μ )∇(∇⋅(∇ ϕ ))−μ ∇×∇×(∇× ψ⃗ )=
∂
2
(∇ ϕ +∇×ψ⃗ )

∂ t 2

And after some rearranging:

∇ ((λ +2μ )∇2
ϕ −ρ

∂
2
ϕ

∂ t 2 )+∇×(μ ∇2
ψ⃗−ρ

∂
2
ψ⃗

∂ t 2 )=0
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Such equation is satisfied for:

Wave Equation using Potentials

(λ +2μ )∇2
ϕ =ρ

∂
2
ϕ

∂ t 2

μ ∇
2
ψ⃗=ρ

∂
2
ψ⃗

∂ t 2

Which are standard Hyperbolic partial differential equations with 
velocities:

α=√ (λ +2μ )ρ

β =√
μ
ρ

α>β
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The harmonic solution for the scalar and vector potentials is:

Wave Solution using Potentials

ϕ=Ae i(ω t−κ⃗α⋅x⃗) ψ⃗=n̂ B ei(ω t−κ⃗ β⋅⃗x)

By substitution into the Helmholtz equation, we get the generic 
harmonic solution of Nevier’s equation:

u⃗=∇(A ei (ω t−κ⃗α⋅⃗x))+∇×( n̂ B ei (ω t−κ⃗β⋅⃗x))

u⃗P u⃗S

u⃗=(A∇ e− i κ⃗α⋅x⃗+B∇×n̂ e− i κ⃗ β⋅⃗x )eiω t

Or identically:
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P and S waves

The wave equation solution leads then to two types of waves:
1) An irrotational wave (no angular distortions), called P (primae)
2) an equivoluminal wave (no change in volume), called S 
(secundae)
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P and S waves

(from  Dr. Dan Russel, University of Kettering – USA)

Longitudinal P waves propagate both in fluids and in solids. 
Transversal S waves ONLY in solids (fluids has no shear resistance).

P and S waves are non-dispersive as VP and VS are frequency-
independent.

P

S
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P-S wave Arrivals

P S
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P-S wave Arrivals
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