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Lecture outline

* Motivation

» Understanding local seismic response and microzonation

» Relevant phenomena for the modification of the ground motion
» Seismic site response evaluation in practice

» Geophysical site characterization techniques (depending on available
time)

« Site term in GMPEs
« Concluding remarks
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Introduction



Factors controlling Ground Motion

Earthquake signals can be strongly altered during their propagation from the source to the
observation point

Significant contribution comes from the uppermost few hundred meters of the earth
structure, where the larger variability of the geological conditions is present

As a result, the waveform at the recording station is generally very different from that one
potentially observed close to the generating fault
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Effect on Ground Motion: Local Seismic Response

» For a particular site, the amplitude and duration of the ground motion during an earthquake can
significantly be modified by the effect of the local site conditions

* On very soft sediments on top of a rigid bedrock, the ground motion can be amplified by more
than a factor of 10, with increase in duration of several tens of seconds...

» Additionally, the energy can be non-evenly redistributed over different frequency bands of the
spectrum, with a chance of matching the dominant resonant frequencies of buildings
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Effect on the environment: Induced Effects

« The local environment is also vulnerable to certain shake levels, through development of
induced or secondary effects, such as

= Ground failures: static displacement (offsets), subsidence, liquefaction, landslides...
= Indirect or triggered effects: flooding, tsunamis, snow avalanches..

» All these phenomena concur to the increase in seismic hazard at local scale

Wi Chnstchurch 2010 § g e Landers 1992

Kobe 1995
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Seismic Microzonation and Site-Response Analysis

Microzonation is the seismic hazard assessment at local scale, accounting for both:

® the modification of the ground motion (amplitude, duration)

® earthquake induced phenomena

S =
B = [

Digitales Geologische Bohrungen Oberflichen-  Geopysikalische Daten
Hohenmodell Karten Profile daten z.B. Seismik u. Geoelektrik

Geological Model

' '

Microzonation is aimed to (but not only):
v Mitigation of damage through

preventive land and urban planning
v Building code provisions

v Assistance to emergency intervention
after catastrophic events
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Microzonation Workflow

Microzonation strongly depends on the background regional seismic hazard, and
produces feedback for its computation (iterative refinement)

Feedback

Seismic
Microzonation




Local Site Response



Local Effects influencing the Ground Motion

Understanding the way local geological structures interact with the ground motion is the
first step in site-response analysis

Different phenomena can contribute to the complexity of the seismic response

® Amplification phenomena (seismic impedance contrast, resonance effect)
® Geometrical effects (2d/3d basin geometries, topography)

® Soil non-elastic behavior (anelasticity, scattering, non-linear response)

Boundaries between these phenomena are overlapping; often one site-effect is controlled
by the occurrence of others (e.g. 3d anelastic resonance....)

Each phenomenon is controlled by a set of specific ground parameters, which can be
quantified through the use of focused analysis (discussed later)



Seismic Velocity Contrast

Theory of linear elasticity shows that a wave propagating across an interface between two
media of different seismic impedance (the product of the seismic velocity and the density)
modifies its amplitude and speed to satisfy the conservation of energy principle
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N\ In the case of a sedimentary valley with soft sediments (low-velocity) on top of rigid
bedrock (high-velocity), amplification of the ground motion has to be expected




The resonance amplification

-field, due to the

> of the wave
which lead to a complex interaction

“trapping

In soft sediment basins it is common a phenomenon of

multiple reflection and refraction of waves within the layers

called seismic resonance
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Constructive Interference
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Linear Filter Equivalence

* For small strain levels the soil behaves as a linear filter

« Such Filter or transfer function can be obtained deconvolving the output signal
(at the free surface) to the input signal (below the bedrock interface)

» Absolute value of the transfer function is the amplification function
» Two useful properties:

§ & |In frequency domain, deconvolution is just a spectral ratio

&= If input is a white spectrum (impulse), the output is equal to the filter itself!

Output
Linear . Output (surface spectrum)
Filter - Input (reference spectrum)
Soil———

% If input and output are known

InPUt the filter can simply be
obtained empirically




Empirical Site-to-Reference Spectral Ratios
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Analytical SH-wave Transfer Function

If input is unknown (very often), the solution can be obtained analytically or numerically

In such cases, a sufficient knowledge of the soil properties is required

For example, by assuming:

* Plane waves with vertical incidence

* One-dimensional soil profile consisting in one layer over homogeneous half-space v

» Perfectly elastic soil behavior H=20m

the soil amplification function A(f) can easily be calculated as: VS=1OOm/s
P y y - - 100 V_=1500m/s

p,=1900Kg/m’

1 10 p,=2500Kg/m°
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Well, site response analysis seems to be relatively
easy to perform....

True; however this is mostly because of the simplification introduced
by using very simplified model assumptions
(e.g. basin is single layer, one-dimensional, perfectly elastic materials....)
AND

oversimplification often leads to increase in uncertainty of the solution,
the so called epistemic uncertainty

Obviously, things are getting more and more complicated when dealing with
real geological structures and realistic velocity profiles

Let's see few examples....
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Site Ampl. Factor

Site Ampl. Factor

...nonetheless, good results can still
be obtained with 1D modeling

— Linear ESM

= SH transfer function [ ;"
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Site effects affecting the ground
motion:

» Wave focusing and defocusing

» Wave diffraction and scattering
» 2D/3D resonance amplification
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2D/3D basin effects

Sedimentary basins with complex 2D/3D
geometry and topography suffer the
additional interaction of the structure with
the earthquake wave-field

Regions of larger
amplification




2D/3D topographic effects

These are considered nowadays a minor contribution to the total amplification, but can
still be relevant in combination with particular soil conditions (e.g. weathering, fracturing).
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Antinode

Analytical
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Quantifying resonance amplification is not easy:
— Analytical solutions (nearly) impossible

— Numerical analysis very complex

= Empirical estimation problematic....

spectral amplification (SH)

2D/3D resonance
amplification
In the 2D/3D case, the resonance effect on

the ground motion can be severe, but well
localized in delimited areas of the basin

Empirical

Semblat and Bard., BSSA, 2008
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Anelastic attenuation

Anelastic (or intrinsic) attenuation is a property of the visco-elastic materials, where
the energy of the propagating wave is dissipated by the effect of friction of the constituting
elements (minerals, sedimentary grains, etc.)
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Non-linear soil behavior

As the excitation level increases during strong earthquakes, some loose soils start
behaving following a non-linear stress-strain relation

As a result, the signal amplitude is
simultaneously:

O decreased by attenuation
® increased by increase in velocity

‘ | Result depends on the intensity

of the shaking, the signal
duration...

Non-linear soil response is characterized by
simultaneous:

O increase in damping (attenuation)

® reduction of the shear modulus (and
thus the seismic velocity)

Assimaki et al., BSSA, 2008

10° 10" 107 107
Strain amplitude [y]



Amplification

102

10!

A

100

TTRHO2 - Transfer Function

—— Strong Motion

Weak Motion
(95% Conf. Lim.)

<« Frequs

The problem of soil non-linearity

= Soil can develop a nonlinear behaviour under
strong ground motions

2 Nonlinearity changes the shape and
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Soil Liquefaction

« Liquefaction occurs in porous, water-saturated soils when the shear strength of the
sediment is reduced by a temporary increase in water pressure induced by the stress-field
of the earthquake

» Important for lifelines (gas, water, electricity), sewage system, earth dams, rail , roads,
landfill areas (harbors), ...

Static conditions ! Under dynamic loading !




Kobe, Japan 1995

Soil Liquefaction

Some example of the effects at local scale....

Emilia, Italy
2012
Mw 6.1

Christchurch, New Zealand 2010
Mw 7.1




Niigata, Japan 1964
Mw 7.5~7.6

Anything
strange you

[zmit, Turkey 1999
Mw 7.6



Cyclic Mobility

It occurs in dense, cohesionless saturated soils when cyclic
loading-unloading is applied

The material experiences several cycles of softening
(decrease in shear resistance) and stiffening

Soil failure may occur after several cycles of loading

Earthquake signal can heavily be altered by development of
large high-frequency pulses in acceleration

M., 7.8 Kushiro-oki (15 Jan 1993)

Shear stress

Complex stress path!

Failure surface

4 : ;
30 —
2_
1t i
-1t , . 12F
—2r —— observed 1 10}
-3} — minimum misfit model|{ &~ sl
_4 L L L L L | | L Lﬂ
5 10 15 20 25 30 35 40 45 50 ¢ ¢l
Time (s) ot
5 4
2
Very difficult to model! ‘ ok
10

M, 7.8 Kushiro-oki (1993)

>
Far
i
||||||||||||||||||

Frequency (Hz)



Indirect modeling methods

« When the complexity of the model and of the phenomena to simulate is too large,
analytical methods are not feasible anymore

« Complex wave-field modeling is nowadays done though the use of highly sophisticated
numerical techniques

» Quality of the solution depends on many factors:
v¢ Assumptions and approximation of simulated the physical laws
¥ Assumptions and approximation / available knowledge of the model parameters

v« Computation costs (large simulations might require days on computer clusters)
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YOU ARE
HERE

Some concluding remarks

What you just learned is only the tip of the iceberyg...

Many other phenomena are relevant at local scale and a
variety of analysis techniques available

Seismic response analysis can be very complex (and very
useful) if properly done

Nonetheless....

Local response is often neglected or analyzed too
simplistically

Why? Basics are not well-understood by practitioners (and in
some cases also by scholars)

As result, many present studies are affected by considerable
uncertainty, which then propagates into other studies......



Site Characterization
Techniques



Ground Parameter Overview

The most relevant parameters to characterize the soil behavior are the seismic velocity of
body waves (Vp and Vs), the density (p) and the attenuation factors (Qp and Qs)

The way these parameters are geometrically distributed controls the modification of

ground-motion during an earthquake

Shear wave velocity, in particular, is the most important property in engineering

applications

A sufficient knowledge of these parameters is essential for any interpretation of recorded

earthquake ground motion
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Indirect (geophysical) investigations

Indirect investigation techniques (or geophysical methods) use the properties of the physical
fields (electric, magnetic, gravity, seismic) to infer information on the soil structure remotely (water

table, bedrock depth)

Electrical Resistivity Schlumberger
—— Profile

Static-field methods:

o Electrical methods (resistivity, self-potential)
o Magnetic method (magnetic susceptibility)
o Gravimetric method

So Measure
Voltage

™
& ivorage
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Wave-field methods:
o Electromagnetic methods (radar)
o Seismic methods (active and passive)

Current Aow
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Active seismic methods

— Make use of an artificial sources to generate a seismic signal
— Two major categories: the travel-time and surface wave methods
— The receivers can be located at the surface or in boreholes

Aaaaaahhhh!!!
Advantages:

* Good signal quality in noisy environments
* Good resolution on the velocity profile

Disadvantages:

¢ Scarce penetration depth with conventional sources
(e.g. hammer, minigun)

* Relatively high costs of implementation

* They can hardly be used in urban environment

(http://www.earth.ox.ac.uk)
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Active surface wave analysis

SASW — Spectral Analysis of Surface Waves
(relative phase delay between pairs of receivers)

MASW — Multichannel Analysis of Surface Waves

(frequency-wavenumber analysis)
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GMPE site term and
Soil Proxies



GMPE - Ground Motion Prediction Equations

Given a specific source scenario (e.g. magnitude, fault mechanism...), GMPEs predict the
shaking level at a given location (e.g. at distance R)
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Path term | * | Site term
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(e.g. high order polynomials) using a
merely empirical approach and single
predictors (PGA, PGV, Intensity)

PRO: generally quite easy to use, often
calibrated on world-wide datasets

CONS: based just on observation, (little)
physical justification, large epistemic
uncertainty



The Generic Site Amplification Term

GMPEs represent a simple and convenient way to predict ground
motion level over wide areas and sites of different characteristic

In order to predict site response for a specific site and in case of lack of
direct recordings, a site amplification model is then necessary

This can be done in two ways, using:

: .

Numerical models Empirical
and closed prediction based
analytical solutions on soil proxies
Possible, but impractical over Simple and convenient,
large scales, due to high costs in although empirical models
obtaining detailed site are still calibrated on direct

parameters.... analysis of earthquakes



Soil classification and proxies

Present GMPEs and building codes use simplified approaches to map the
variability of local site response over wide areas by means of statistical
models based on ground types (or classes) and empirical observations

Ground types are identified by appropriate near-surface proxies, such as:

— the average velocity over the first 30 meters (Vs, )

— the fundamental frequency of resonance
— results from SPT/CPT tests
— geological/geotechnical classification...

S TB TC TD S IA26 1 -

Ground | Description Vs Ngpr s,
Class [m/s] kN/m?] [s] [s] [s]
A firm rock (e.g. granite, gneiss, quartzite, siliceous > 800 - - 1.00| 0.15| 0.4 2.0

limestone, limestone) or soft rock (e.g. sandstone,
conglomerate, Jura marl, Opalinus claystone)
beneath a maximum soil cover of 5 m

B deposits of extensive cemented gravel and sand [ 400...800| >50 |§>250 [1.20| 0.15| 0.5 | 2.0
and/or overconsolidated soils with a thickness
exceeding 30 m

C deposits of normally consolidated and uncementedfl 300...500 (15...50|§0...250(1.15| 0.20 | 0.6 | 2.0
gravel and sand and/or moraine with a thickness
exceeding 30 m

D deposits of unconsolidated fine sand, silt and clay §150...300 | <15 <70 (135|/020| 08 | 20
with a thickness exceeding 30 m

E alluvial surface layer of Ground Classes C or D, - - - &.40 0.15| 0.5 2.0
with a thickness of 5 to 30 m lying above a
stiffer layer of the Ground Classes A or B

F deposits of structurally-sensitive and organic - - - - - - -
deposits (e.g. peat, lake marl, slide material)
with a thickness exceeding 10 m




Some Considerations on the Use
of Soil Proxies

— Proxies are a convenient way to characterize soil types of “expected’ similar
seismic response using just a single parameter

— Soil proxies can be obtained by direct measure or (very often) by indirect
extrapolation from other direct observations (e.g. geology, topography)

— However, despite of their simplicity, these proxies:
(D do not fully describe the vertical/lateral variability of the soil structure
(@ can hardly describe the frequency dependent amplification behavior

3 cannot account for site-specific phenomena like soil non-linearity and
resonance amplification



What Vs, actually is?...

« Vs, is the travel-time average shear-wave velocity over the first 30m.
 |tis computed in such a way:

Vs30=

30
h

> U

i=1,N Vi

...but why using 30m, and not 10, 25 or 50m?

« Simply because ~30m (100ft!) was the standard penetration depth of most of
the direct logging techniques of the past (at least in US).

Consequently...

 The large availability of log data within this depth range imposed this
parameters as de facto standard (but without a clear physical meaning)
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parameter highly correlated
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.even if prediction uncertainty is
quite large



Source of Uncertainty of the Predictor

« Vs, is basically a proxy for the contrast of seismic impedance between

the basement (source condition) and the uppermost (average) soil,
which is controls the average amplification level of the site

« However, Vs, , cannot explain those complex phenomena developing

“‘within” the profile...

Works nicely
with rock sites
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Amplification function
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Additional Source of Uncertainty

« Vs,, can also be biased by the way it is obtained, often not from direct

measurement but extrapolated from other surface proxies (geology,
geotechnical classification, CPT tests....)

« The conversion introduces an additional contribution to the uncertainty,
which sum to the final error in the prediction

Geology Vs30
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O000O0OOEOm

Willis and Clahan (2006)




Vs30 from Geology
Vs, from Topography AN a4

* Nowadays, a popular way to map
Vs, over large areas is the use of

topographic slope from geodetic
observations (Wald and Allen, 2007,
2009)

* The relation is based on the
concept of “depositional energy”
of the sediments

Elevation in Meters

Outeropping 0 375 75 km —
u i
Vs30 (m/sec)
rock e - 50-250
620-760 & 250-400
490-620 =
360-490 H 400-650
300-360
anrse 240-300 D 650-800
Sediments 180-240 g
<180 E 800-1000
Fine > 1000
Sediments L
237 PEL e
> Vs30 from Slope

Decreasing
energy



Vs, from Topography

The slope-Vs, relationship is based on the National Earthquake Hazard
Reduction Program (NERHP) Vs, boundaries (arbitrary?)

Summary of Slope Ranges for NEHRP V3° Categories

Calibration databases

Slope Range (m/m)

Vi Range from different regions:
Class (m/sec) Active Tectonic Stable Continent
E <180 <1.0E—4 <2.0E—5 : )
>
180-240 10E—4-22E—3 2.0E—5-2.0E—3 California
D 240-300 2.0E—3-63E—3 2.0E—3-4.0E—3 » Utah
300-360 6.3E—3-0.018 40E—3-72E—3 > Central US.
360-490 0.018-0.050 7.2E—3-0.013 > Tai
C 490-620 0.050-0.10 0.013-0.018 alwan
620-760 0.10-0.138 0.018-0.025 > ltaly
B >760 >0.138 >0.025 > Australia
+ California (A) +  Memphis (B)
Italy ¥ Australia -
+  Taiwan : 3 .
+  Utah i
10°} 10°} &
0
E
= ;
|t |
1+t
2 2
10 10 ; :
10° 10° 10° 10™ 107 10°

Topographic Slope (m/m) Topographic Slope (m/m)



...and the question is finally:

Is Vs, really so adeq

uate as

proxy for site amplification?

Vs, is probably not sufficient for future

engineering products, as it introduces too
large uncertainties

Epistemic uncertainty can be
reduced at the expenses of
increasing model complexity, by
introducing physics-based
concepts

e Model
A Data Misfit Complexity
— >
Empirical Physics based

models simulations




Modeling Site-Response
Into GMPEs



Boore et al. (1997)

Assuming a linear amplification of motion Boore et al. (1997) proposed the following
formula to model site amplification using a site-specific Vs 3, value:

For PGA the coefficients are:
- a=-0.371
Vet = 1396 [M/s]

S,30

In(Amp)=aln

Ref

3.0

Amplification, amp []

0.5

0 200 400 600 800 1000 1200 1400 1600
Vo [M/s]



Ambrahamson and Silva (1997)

Ambrahamson and Silva (1997) using a generalized soil category developed a model
for site response accounting for the non-linear behaviour of materials

For PGA the coefficients are:

In(Amp)=a+bIn(PéA +c) - a=-0417
rock - b=-0.230
- ¢=0.03

Amplification, amp []

O'%.D 0.2 0.4 0.6 0.8 1.0
Spectral acceleration on rock for (T=0.01), S, [g]



Choi and Stewart (2005)

Choi and Stewart (2005) proposed and empirical model for assessing the nonlinear amplification
factor for spectral acceleration as a function of Vs3,. The results can be used as Vs-30-based site
factors with attenuation relationships

VS-30-- PHAr

= Y —U . ..
In(F;;)=cln Vo +b1In 01 +nte;,

where:
- PHA, peak horizontal acceleration for reference [rock] site condition [g]
- Vs and c are regression parameters

- h;is a random effect term for earthquake event i (should have zero median across
all events, standard deviation is denoted as t); and e; represents the intra-event
model residual for motion j in event i (should have median near zero for well-
recorded events, standard deviation is denoted s).
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