GMPE site term and Soil Proxies

GMPE - Ground Motion Prediction Equations

Given a specific source scenario (e.g. magnitude, fault mechanism...), GMPEs predict the shaking level at a given location (e.g. at distance R)

Often source, path and site terms are described by a simple **regressive model** (e.g. high order polynomials) using a merely empirical approach and **single predictors** (**PGA**, **PGV**, **Intensity**)

PRO: generally quite easy to use, often calibrated on world-wide datasets

CONS: based just on observation, (little) physical justification, large epistemic uncertainty

The Generic Site Amplification Term

GMPEs represent a simple and convenient way to predict ground motion level over wide areas and sites of different characteristic

In order to predict site response for a specific site and in case of lack of direct recordings, a site amplification model is then necessary

This can be done in two ways, using:

Soil classification and proxies

Present **GMPEs** and **building codes** use simplified approaches to map the variability of local site response over wide areas by means of **statistical models** based on **ground types** (or classes) and **empirical observations**

Ground types are identified by appropriate **near-surface proxies**, such as:

- \rightarrow the average velocity over the first 30 meters (Vs₃₀)
- \rightarrow the fundamental frequency of resonance
- \rightarrow results from SPT/CPT tests
- \rightarrow geological/geotechnical classification...

Ground Class	Description	<i>v_s</i> [m/s]	N _{SPT}	s _u [kN/m²]	S	Т _в [s]	Т _с [s]	<i>T_D</i> [s]
A	firm rock (e.g. granite, gneiss, quartzite, siliceous limestone, limestone) or soft rock (e.g. sandstone, conglomerate, Jura marl, Opalinus claystone) beneath a maximum soil cover of 5 m	> 800	-	-	1.00	0.15	0.4	2.0
В	deposits of extensive cemented gravel and sand and/or overconsolidated soils with a thickness exceeding 30 m	400800	> 50	> 250	1.20	0.15	0.5	2.0
С	deposits of normally consolidated and uncemented gravel and sand and/or moraine with a thickness exceeding 30 m	300500	1550	0250	1.15	0.20	0.6	2.0
D	deposits of unconsolidated fine sand, silt and clay with a thickness exceeding 30 m	150300	< 15	< 70	1.35	0.20	0.8	2.0
E	alluvial surface layer of Ground Classes C or D, with a thickness of 5 to 30 m lying above a stiffer layer of the Ground Classes A or B	-	-	-	1.40	0.15	0.5	2.0
F	deposits of structurally-sensitive and organic deposits (e.g. peat, lake marl, slide material) with a thickness exceeding 10 m	-	-	-	_	-	-	-

SIA261 - Example of soil classification using Vs₃₀

Some Considerations on the Use of Soil Proxies

⇒ Proxies are a convenient way to characterize soil types of "*expected*" similar seismic response using just a single parameter

⇒ Soil proxies can be obtained by direct measure or (very often) by **indirect extrapolation** from other direct observations (e.g. geology, topography)

 \Rightarrow However, despite of their simplicity, these proxies:

(1) do not fully describe the **vertical/lateral variability** of the soil structure

(2) can hardly describe the **frequency dependent** amplification behavior

(3) cannot account for site-specific phenomena like soil non-linearity and resonance amplification

What Vs₃₀ actually is?...

- Vs₃₀ is the travel-time average shear-wave velocity over the first 30m.
- It is computed in such a way:

$$Vs\,30 = \frac{30}{\sum_{i=1,N} \frac{h_i}{v_i}}$$

...but why using 30m, and not 10, 25 or 50m?

 Simply because ~30m (100ft!) was the standard penetration depth of most of the direct logging techniques of the past (at least in US).

Consequently...

• The large availability of log data within this depth range imposed this parameters as **de facto standard** (but without a clear **physical meaning**)

quite large

Source of Uncertainty of the Predictor

- Vs₃₀ is basically a proxy for the contrast of seismic impedance between the **basement** (source condition) and the **uppermost** (average) soil, which is controls the average amplification level of the site
- However, Vs₃₀ cannot explain those complex phenomena developing *"within"* the profile...

Additional Source of Uncertainty

- Vs₃₀ can also be biased by the way it is obtained, often not from direct measurement but extrapolated from other surface proxies (geology, geotechnical classification, CPT tests....)
- The conversion introduces an additional contribution to the uncertainty, which sum to the final error in the prediction

Geology

Vs30

Willis and Clahan (2006)

Vs₃₀ from Topography

- Nowadays, a popular way to map Vs₃₀ over large areas is the use of topographic slope from geodetic observations (Wald and Allen, 2007, 2009)
- The relation is based on the concept of "depositional energy" of the sediments

Coarse

Sediments

Outcropping

rock

Vs₃₀ from Topography

The slope-Vs₃₀ relationship is based on the National Earthquake Hazard Reduction Program (NERHP) Vs₃₀ boundaries (arbitrary?)

	V_s^{30} Range (m/sec)	Slope Range (m/m)			
Class		Active Tectonic	Stable Continent		
Е	<180	<1.0E-4	<2.0E-5		
	180-240	1.0E - 4 - 2.2E - 3	2.0E - 5 - 2.0E - 3		
D	240-300	2.2E - 3 - 6.3E - 3	2.0E - 3 - 4.0E - 3		
	300-360	6.3E-3-0.018	4.0E - 3 - 7.2E - 3		
	360-490	0.018-0.050	7.2E-3-0.013		
С	490-620	0.050-0.10	0.013-0.018		
	620–760	0.10-0.138	0.018-0.025		
В	>760	>0.138	>0.025		

arry of Slama Damaga for NEUDD 1/30 Catagorian

Calibration databases from different regions:

- California
- Utah
- Central U.S.
- Taiwan
- ➤ Italy
- > Australia

...and the question is finally:

Is Vs₃₀ really so adequate as proxy for site amplification?

Vs₃₀ is probably not sufficient for future engineering products, as it introduces too large uncertainties

Epistemic uncertainty can be reduced at the expenses of increasing model complexity, by introducing physics-based concepts Modeling Site-Response Into GMPEs

Boore et al. (1997)

Assuming a linear amplification of motion Boore et al. (1997) proposed the following formula to model site amplification using a site-specific $V_{s,30}$ value:

$$\ln(Amp) = a \ln\left(\frac{V_{S,30}}{V_{Ref}}\right)$$

For PGA the coefficients are:

- a = - 0.371

Ambrahamson and Silva (1997)

Ambrahamson and Silva (1997) using a generalized soil category developed a model for site response accounting for the non-linear behaviour of materials

$$\ln(Amp) = a + b \ln \left(P \hat{G} A_{rock} + c \right)$$

For PGA the coefficients are:

- a = 0.417
- b = -0.230
- c = 0.03

Choi and Stewart (2005)

Choi and Stewart (2005) proposed and empirical model for assessing the nonlinear amplification factor for spectral acceleration as a function of $V_{S,30}$. The results can be used as *Vs-30-based* site factors with attenuation relationships

$$\ln(F_{ij}) = c \ln\left(\frac{V_{s-30_{ij}}}{V_{ref}}\right) + b \ln\left(\frac{PHA_{r_{ij}}}{0.1}\right) + \eta_i + \varepsilon_{ij},$$

where:

- PHA_r peak horizontal acceleration for reference [rock] site condition [g]
- V_{ref} and c are regression parameters
- h_i is a random effect term for earthquake event i (should have zero median across all events, standard deviation is denoted as t); and e_{ij} represents the intra-event model residual for motion j in event i (should have median near zero for wellrecorded events, standard deviation is denoted s).