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Participation to Earthquake Hazard Projects
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Resources

These lectures wouldn't have been available without the contribution of many people and the
numerous resources from textbooks and online material.

A special acknowledgment (and a personal thanks) goes to the following people for their
supporting material:

Dr. Dario Slejko — OGS, Trieste, Italy
Dr. Laurentiu Danciu — Swiss Seismological Service, ETH, Zurich, Switzerland
Dr. Marco Pagani - GEM Foundation

Dr. Donat Faeh — Swiss Seismological Service, ETH, Zurich, Switzerland
Dr. Elisa Zuccolo — EUCENTRE Pavia

Dr. John Douglas - University of Strathclyde, UK
Dr. Dave Boore - USGS

(I hope | did not forget anyone....)




Earthquakes: a widespread danger

Earthquakes are one of the most
frequent and costly natural

hazards worldwide.

Percentage of occurrences of natural disasters
by disaster type (1995-2015)
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Global deaths from natural disasters (1900-2016)

The size of the bubble represents the total death count per year, by type of disaster.
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Data source: EMDAT (2017): OFDA/CRED International Disaster Database, Université catholique de Louvain - Brussels - Belgium.

OurWorldInData.org - Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

This project is funded by
the European Union




The Earthquake Impact

The earthquake main threat is related to the impossibility of structures (buildings, bridges, etfc.) to
withstand extreme ground shaking, and to a lesser extend to the occurrence of secondary

phenomena (ground failure, tsunamis, etc.)

"Earthquakes don't kill
people, collapsed
buildings do so"

M6.5 Taiwan earthquake in 2016
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Defining the Expected Shaking Level

Reduction of losses should then be properly done by preemptive design and reinforcement of new

and existing building and infrastructures.

This requires, however, a proper estimation of the ground shaking level likely expected at a site,

within a given interval of time

Question is: how and how precisely this level
can be defined, given the (little) knowledge

we have of the earthquake processe

http://www.howitworksdaily.com/
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SHA Requirements

To assess the earthquake hazard associated to aregion is essential to know:
o Where the earthquakes occur and the geometry of the seismic sources
o When (How often) earthquakes of given size occur at each seismic source

o How earthquakes propagate within the crust due to mechanical properties of

geological materials (including surface geology)
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Where do Earthquakes Occur?

Earthquake activity is not distributed uniformly around

the world. It is mainly confined to relatively narrow bands

of infense seismicity on “active” tectonic margins.
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Where do Earthquakes Occur?

On a smaller spatial scale, earthquake seismicity is organized often in

patterns, so that areas of different “productivity” can be

discriminated on the base of the historical earthquake log (the

seismic catalogue).
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How often do Earthquakes occur?

Earthquake generafion is not a predictable

process. Earthquakes occur randomly in time,
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Occurrence in Numbers

Large magnitude destructive earthquakes are rather infrequent, although small (mostly non

damaging) earthquakes occur every day.

Magnitude Description Numberin 1 Year One Quake Every
8+ Great <1 1--2 years
7.0-7.9 Major 17 every 20days

6.0-6.9 Large 135 3 days
5.0-5.9 Strong 1320 9 hours
4.0-4.9 Moderate 13000 90 minutes
3.0-3.9 Mild 130000 11 minutes
2.0-2.9 Small 1300000 2 minutes

im Q + M Akua Capital
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Energy and Occurrence

Magnitude (M)

10

Earthquake energy and frequency

Notable earthquakes Events with similar energy

Chile — 1960
Cascadia subduction zone — AD 1700

Power the US for 2,000 years

750 days of a hurricane

near total destruction; Tohoku, Japan — 2011
massive loss of life
Largest nuclear bomb test (Tsar Bomba — USSR)

major earthquake; San Francisco — 1906 Mount St. Helens eruption
severe economic impact; -
large loss of life Nisqually — 2001 1 day of an average hurricane Q
strong earthquake; Seattle fault — AD 900 (7))
large economic impact; Tacoma - 1965 ©
loss of life Hiroshima atomic bomb (Little Boy) 2
moderate earthquake: Power the US for 1 day e
property damage Duvall - 1996 >
o
small earthquake; Average tornado —
some property damage d:’
; . w
minor earthquake, ; ;
felt by humans « Large lightning bolt

Oklahoma City bombing

1.1 gigawatts
for 1 hour

Earthquake data and frequency from USGS at http://earthquake.usgs.gov/earthquakes/eqarchives/year/egstats.php
Energy released and events from http://alabamaquake.com/energy.html and http://fen.wikipedia.org/wiki/Orders_of_magnitude_(energy)
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Gutenberg-Richter Occurrence Relation

Gutenberg and Richter observed in 1944 that the cumulative number of earthquakes (per unit time)
usually scales linearly with magnitude (ML), according to the law:

loglo(Nc) =a-— bML 10’

‘{(M =0) = “a-value”

Log (Nc)=a - bM

-
()
=}

a = intercept, represents the

seismic productivity of the region
(at M=0)

107 gradient = “b-value”
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b = slope, represents the relative
proportion between small and
large event
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Predicting Ground Motion

Ground Motion Prediction Equations (GMPEs) are the simplest empirical (and in few cases analytical)
answer to the following question:

“If we know where a major earthquake is likely to occur, how large will the ground motion be at a
particular sitee”

GM Amplitude | = I Source term I*I Path term I* Site term

1.000+

i Site

&
=) Surficial layers 2L 0.100+
£
<
(]
~
Source 0.010-E
log(Y) = f(M; Al) + E 0.001+

| i B s | § PRI I | ' i
1 10 50 100 200
Joyner-Boore distance (Km)

Q N Akua Capital -

o Nl This project is funded by
the European Union




GMPE Functional Form

The functional form of empirical ground motion model is created following physical principles i.e.
trying to reproduce the basic physics of the process.

Here is an “simple” example:

1
— 2
log(Y) =cy + ;M + c, M= + c3log(+/(R2+ h?) )+ 0 g =/1%2+ 2
J
Table 2
Coefficients of Equation (1)

PSA at Frequency ¢y ¢y c; c3 o-intra o-inter o-total

0.2 —4.374 1.134 0.0038 —1.426 0.26 0.17 0.31

0.33 —3.869 1.110 0.0039 —1.447 0.25 0.21 0.33

0.5 —4.503 1.532 —-0.0430 —1.404 0.25 0.22 0.33

1 —2.009 1.890 —-0.1248 —1.828 0.27 0.21 0.34

2 —4.128 1.792 —-0.0791 —1.526 0.30 0.19 0.35

3.33 -2.076 1.889 —-0.1257 —1.886 0.31 0.18 0.36

. .. 5 -3.918 2.112 —-0.1266 -1.591 0.31 0.20 0.37
Different set of coefficients are 10 -2.839 1.905 -0.1134 ~1.658 0.30 0.25 039
f' f . 20 —2.337 1.902 —-0.1252 —1.838 0.29 0.29 0.41

33 -2.313 1.840 —-0.1119 —1.708 0.29 0.26 0.39

de Ined or eOCh ground mOTlon PGA —2.427 1.877 -0.1214 —1.806 0.29 0.24 0.37
measure Type (PGA, SA.. ) . PGV ~4.198 1.818 -0.1009 -1.721 0.28 0.18 033

Equation (1) predicts 5% damped horizontal-component pseudospectral acceleration (PSA, in cm/s?) for B/C site conditions,
peak ground acceleration (PGA, in cm/s?), and peak ground velocity (PGV, in cm/s). The standard deviation of residuals (o-
total) and its intraevent and interevent components are also given.
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GMPE Calibration and Uncertainty

Relation calibration is done on large datasets of earthquake waveforms Probability
o o o o
covering sufficient magnitude and distance ranges. Uncertainty is ]
assumed log-normally distributed. -
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Deterministic vs Probabilistic

Two are the main methodologies currently adopted for seismic hazard analysis:

Deterministic. Also called the “Worst Case Scenario”

One or a few earthquake potential scenarios are selected, and the corresponding ground
motion computed assuming a level of uncertainty on ground motion (i.e., a number of
standard deviations above the median value predicted by a Ground Motion Prediction

Equation - GMPE).

Probabilistic: All possible scenarios of engineering relevance for the investigated site are

considered in the analysis, considering their probability of occurrence i.e., all ruptures

(magnitude + distance) and levels of uncertainty on ground motion.

This project is funded by
the European Union
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Scenario Based Approach

1) Select one or more sources through specific

http://ecimages.gsfc.nasa.gov magnitude and distance combinations

2) Compute  expected  ground motion

(accounting for variability)

CISN ShakeMap : 39.0 mi SSE of Calexico, CA
Sun Apr 4,201003:40:40 PMPDT M 7.2 N3213W11530 Depth: 10.0km 1014607652
335 g e Q ~

Modified from Field (USGS) : ' CE A % Shaklng
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Defining a Reasonable Scenario... ?

Note that worst-case ground motion is generally NOT selected in deterministic approach.
Combing largest earthquake with the worst-case ground motion is too unlikely a case:

— The occurrence of the maximum earthquake is rare, so it is not “reasonable” to use a worst-case
ground motion for this earthquake. Chose something smaller than the worst-case ground motion
that is “reasonable”, but reasonable is of difficult quantification.

— What if several sources are presente Is the closest source always the most dangerous?

— There is clear need to account for spatial-temporal variability and to evaluate ground motion
exceedance!

Seismic Hazard Analysis (PSHA)....

— A
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Probabilistic Seismic Hazard Analysis

The probability that a certain ground motion level will be exceeded in a given time interval is computed by
considering the earthquake scenarios generated by all potential sources within a certain distance range

from the investigated site.

Wher
Seiﬁ) enic How (strong)
Modelsg Ground Motion
Models
10 .
y (@) When (how often) (d)
ine Source
e Recurrence Models
1 == -
10 : C) T TAN.
g (b) S [~ ~p~-- < TS
g 0.1} S § ~ 4
‘g we \\ean INPGA prediction, given M= 6.5 ) b N
[ == == Mean InPGA prediction +/1 one standard deviation
Area Source © 001. i =
'_:" Distance, r
Modified from Baker (2008) E
<
10°3 4 5 6 7 8

Magnitude, m
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The Earthquake Hazard Integral

The rate A of events with intensity (IM) larger than a value x experienced at a given site from the

contribution of all sources can be formalized as:

Nsources

AM = x) = Z A(m; = myin) JmmaxfrmaxP(lM = x|m,r)fy, (M) fr,(r|m)dmdr

i=1 Mmin

min

L Loop over distances
——» Loop over magnitudes

» Loop over sources

A(m; = min,,;,) = the rate of occurrence greater than M
fMl.(m) = the PDF of the magnitude distribution
fRi(rlm) = the PDF of distance, conditional to magnitude m

P(IM = x|m,r) =the probability of exceeding an IM level, given m and r




PSHA Ouvutput: Hazard Curves

Using this equation, the annual rate A of exceedance is computed for a range of intensity measures

(IM) to produce hazard curves. Inverse of A is defined the average return period.

107"

1072

The hazard curves are subsequently

translated into probability by using a

Annual rate of exceedance
S

Poisson recurrence model (assuming

independent events) 10'50 1 o5

This project is funded by
the European Union
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Poisson Process

Poisson process - describes the probability that a given number of events (n) with a known

constant mean rate (A) will occur in a given time interval (t), assuming that:

« The number of occurrences in one time interval are independent of the number that occur in
any other time interval;

« Probability of occurrence in a very short tfime interval is proportional to length of interval;

« Probability of more than one occurrence in a very short time interval is negligible.

(At)ne—/lt
n!

P(N =n|t) =

The probability of “at-least” one occurrence in time t (observation time) is then expressed as the

total probability (1) minus the probability of no successful events (0):

PIN=1t) =1-P(0)=1—e*




Probability of Exceedance in 50 Years

Hazard Curves in Probability of Exceedance

The Poisson assumption is used to convert the output of the hazard integral from rate A of events to
probability.
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Which Probability of Exceedance?

Normative and building codes usually consider a selected number of probability of exceedance
(POE), which is representative of the ground shaking potentially hazardous for different structure
typologies.

107 |

102 }
Normal dwellings

10° i
' Hospitals, schools, etc.

10 |

Annual Frequency of Exceedance
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Seismogenic Source Model

Distributed Seismicity:

o Single points

o Line sources

o Grid representations (e.g., smoothed seismicity)

o Polygon of Uniform Seismicity (so far, the most widely used approach)

Legend
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The Homogenous Area Source Zonation

In homogenous area source zonation, observed seismicity is assumed to have equal probability to occur
anywhere within the area.

Source Zone
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The Homogenous Area Source Zonation

Zones are defined on the base of the observed seismicity and the available geological and

seismotectonic information for the areaq.
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Smoothed Seismicity Model

The homogenous area source zonation approach may not be appropriate for regions where

seismicity is known to be spatially localized.

A smoothed source model can be used instead, where occurrence rates of each homogenous

zone are spatially reorganized on a grid of point sources, weighted according to the spatial

density of nearby events.

T o s e
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 30
X (Km) X (Km) X (Km)

400 500
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Smoothed Seismicity Model

The smoothing approach produces a more realistic spatial source pattern but, heavily relying on
the location of past known events, is on the contrary less effective in depicting future events

happening in mismatching locations.

35°
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30°
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Finite Fault Model

Complementary to the distributed seismicity, the direct modelling of finite faults has the advantage

of better representing ground motion in the source near field.

However, this is possible if enough information (fault geometry, kinematic parameters, displacement

rates) is available for the investigated area with sufficient reliability.

~ Fault Surface Mesh

Fault Trace /
Upper

Seismogenic —  _— e

Depth \ ..........
Lower /

Seismogenic
Depth

Single Earthquake Rupture

modified from “the OpenQuake-engine book: underlying hazard science”
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The Fault Source Model

Occurrence rates of each fault can be derived from observed seismicity or from slip rate estimates,

by balancing the scalar seismic moment accumulation from the integral of the incremental MFD
through a direct fitting procedure.

A\ S REme T This provides a complementary
N 'P\\Turkmenistan < i ::. = .
YN e mean of evaluating source

— ° * Q;; E T - N

productivity for the very low

return periods.
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Variability and Uncertainty

Uncertainty and variability are concepts tightly linked with seismic hazard analysis
Two are the typologies of uncertainty considered:

« Aleaftory
» Epistemic

Aleatory uncertainty relates to the intfrinsic randomness and the nature of the earthquake
process

Epistemic uncertainty on the contrary depends on our limited knowledge the phenomenon
(e.g., lack of observation datq)

This means that: aleatory uncertainty is irreducible whereas epistemic uncertainty can be
potentially reduced

This project is funded by
the European Union
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Variability and Uncertainty

Epistemic and aleatory variability are nonetheless handled separately into the hazard analysis
process:

1) Aleatory uncertainty is usually incorporated in the PSHA integrals
Examples: Earthquake location, uncertainty on ground motion estimates

2) Epistemic uncertainty is formally considered by using alternative models (or parameterizations)
within a logic-tree structure

Examples: ground motion models, recurrence parameters (b-value, maximum magnitude),
style of faulting....
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Logic-Tree Strategy

A logic-tree consists of branches, which are independent, mutually exclusive and collectively

exhaustive representations of the source and ground motion variability.

Commonly, several branching levels are used to combine uncertainties of different type.

Initial Seismic Source
Model
Fault Source S1 [Active

shallow]

a
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Model 1
Fault Source S1 [Active shallow] - Dip 50 - GSIM 1

Model 2
Fault Source S1 [Active shallow] - Dip 50 - GSIM 2

Model 3
Fault Source S1 [Active shallow] - Dip 60 - GSIM 1

Model 4

Fault Source S1 [Active shallow] - Dip 60 - GSIM 2

Model 5
Fault Source S1 [Active shallow] - Dip 70 - GSIM 1

Model 6

Fault Source S1 [Active shallow] - Dip 70 - GSIM 2




Assigning Weights

Each model is assigned weights, which express the degree of belief on that model. But how to assign
weights?

o Based on fits to observed data? (Empirical approach)
o Based on theoretical representation of the physics of the process? (Physical approach)
o Weights assignment could be (actually, often is) a subjective process based expert judgement.
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A Posteriori Statistic

From the ensemble of all hazard curves from each log-tree realization, mean and percentile curves
can be computed
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PSHA Output: Hazard Maps

Hazard maps are used to show how uniform probability of exceedance of a given ground motion
measure for a given observation period distributes over the area.

Spectral Acceleration (10% in 50 years)
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Hazard Disaggregation

For a given site, ground motion intensity measure and return period, the fractional conftribution of
specific scenarios to the hazard can be extracted from the hazard analysis via disaggregation.

The most common form of disaggregation is a
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Uniform Hazard Spectra

A common goal of PSHA is to identify a design response spectrum to be used for both structural and

geotechnical analysis.

Uniform hazard spectra (UHS) is used to represent ground motion that have an equal probability of

being exceeded in a fixed time span.
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Uniform Hazard Spectra

UHS can be computed using GMPEs that support several spectral periods in the following way:
1) Choose the target return period to use for the calculation of the UHS (e.g., 475 years)
2) Compute the hazard curve for each spectral ordinate

3) Select the Sa for the RP specified at point 1
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Uniform Hazard Spectra

Since the hazard is computed independently for each spectral period, in general, a uniform hazard
spectrum does not represent the spectrum of any single earthquake. Each “part” of the spectrum is

sensitive to a generally different controlling scenario.

UHS=envelope

1.5

SA (9)

-
e
e l s

o qA | | I

T(s)

This project is funded by
the European Union




Conclusions

o Probabilistic Seismic Hazard Assessment (PSHA) is a powerful seismological tool to overcome
the limitation of earthquake unpredictability.

o It provides engineers, insurers, decision makers and politician with a mean of evaluating the
likelihood of damaging ground motion to happen, so that appropriate mitigation strategies
can be applied.

o However, PSHA is a complex process, and it should be performed by experts with appropriate

understanding of the matter and experience.
o PSHA itself is just a tool, and the quality of the result is highly driven be the knowledge we have
for the study area and the availability of calibration data.
o Very common mistakes:
=  Mixing scales of applicability (e.g. regional and site-specific)

= Comparison with occurrence of single events (mixing probabilistic with deterministic)
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Suggested textbooks and tutorials

= Stein S., and M. Wysession. An Introduction to Seismology, Earthquakes, and Earth Structure. 1st
ed. Malden, MA: Blackwell, September 2002. ISBN 9780865420786.

= Kramer, S.L., Geotechnical Earthquake Engineering, Prentice Hall, 1996, ISBN 0133749436
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Thank you very much for your aitention!
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